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a b s t r a c t

We consider a nonlinear discrete-time population model for the dynamics of an age-structured species.
This model has the form of a Lure feedback system (well-known in control theory) and is a particular case
of the system studied by Townley et al. in Townley et al. (2012). The main objective is to show that, in
this case, the range of nonlinearities for which the existence of globally asymptotically stable non-zero
equilibrium can be guaranteed is considerably larger than that in the main result in Townley et al. (2012).
We illustrate our results with several biologically meaningful examples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lesliematrixmodels have beenwidely employed to understand
the dynamics of populations structured into age classes [1]. The
model can be written as follows

xt+1 = P(xt)xt . (1)

Here xt ∈ Rn
+
is the class distribution vector (where R+ = [0,∞))

at discrete time t ∈ N and

P(x) =


ρ + φ1(x) φ2(x) φ3(x) · · · φn(x)
τ1(x) 0 0 · · · 0
0 τ2(x) 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 τn−1(x) 0

 ,
with 0 < τi ≤ 1 and 0 ≤ φi. The subdiagonal elements, τi, capture
the demographic transitions between age-categories, whilst in the
elements in the first row, φi correspond to the newborns and ρ is
the fraction of individuals in the first age class who remain in this
class after one time unit (for example, because they do not mature
in one time step).
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In this paper, we consider the following system

xt+1 = Axt + bf (cT xt), (2)

where A is an asymptotically stable non-negative matrix in Rn×n,
b, c ∈ Rn

+
\{0} and f :R+ → R+ is a continuousmapwith f (0) = 0

and f (y) > 0 for y ∈ R+\{0}. Systems of the form (2) are known in
systems & control theory as Lure systems, the stability properties
of which have been studied in the context of the so-called absolute
stability theory (mainly in a continuous-time setting); see, for ex-
ample [2,3]. Introducing the linear controlled and observed system

xt+1 = Axt + but , yt = cT xt , (3)

the Lure system (2) can be thought of as the closed-loop system
obtained by applying nonlinear feedback of the form ut = f (yt) to
the linear system (3).

We note that if A and b satisfy

A =


1 − δ 0 0 · · · 0
a1 0 0 · · · 0
0 a2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 an−1 0

 , b =


b1
0
0
0
0

 ,
where 0 < δ ≤ 1, and ai, b1 > 0, (4)

then system (2) is a particular case of system (1) in which a con-
stant proportion of the individuals in each age-category, from 1 to
n−1, at time-step t reaches the next age class in the time-step t+1,
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i.e., the functions τi(x) = ai are constant; moreover, ρ = 1− δ and
φi(x) = b1f (cT x)/∥x∥1 for all i, where ∥ · ∥1 is the 1-norm in Rn,
that is, ∥x∥1 =

n
i=1 |xi|, where xi denotes the ith component of x.

The global dynamics of (2) have been recently considered in [4],
where it is shown that (under certain conditions) system (2) satis-
fies a trichotomy of stability, which is characterised by the rela-
tionship between the graph of f and the line with slope

p :=
1

cT (I − A)−1b
.

Weemphasise that the results in [4] are not restricted to the special
case given in (4). Nevertheless, in [4], those results are illustrated
by a model for Chinook Salmon (Oncorhynchus tshawytscha) which
satisfies (4).

In [4], the following sector property for f is crucial for the proof
of the existence of a positive global attractor for system (2).

(C) There exists a unique y∗ > 0 so that f (y∗) = py∗ and

|f (y)− py∗
| < p|y − y∗

|, y ∈ R+ \ {0, y∗
}. (5)

Actually, in [4], the stronger assumption that there exists m ∈

(0, p) such that

|f (y)− py∗
| ≤ m|y − y∗

|, y ∈ R+ \ {0, y∗
} (6)

was imposed. Although not explicitly stated in [4], (6) guaran-
tees global exponential stability, whilst (5) is sufficient for global
asymptotic stability.

Defining fp : R+ → R+ by

fp(y) = f (y)/p, y ∈ R+,

we remark that the sector condition (C) implies that y∗ is a global
attractor for the scalar difference equation

zt+1 = fp(zt), (7)

where by global we mean that for all positive y, the orbit f n(y) of y
converges to y∗ as n → ∞. Condition (C) is satisfied, for example,
by the Beverton–Holt map (f (y) = λy/(K + y), λ, K > 0) and the
Ricker map (f (y) = y exp(−λy), λ > 0), whenever |f ′(y∗)| < p,
i.e. when the fixed point y∗ of the map fp is locally asymptotically
stable: the proof for theBeverton–Holtmap is straight-forward and
the reader can find the Ricker map case discussed in [4]. However,
as Fig. 1 illustrates, for other importantmaps, the condition |f ′(y∗)|
< p is not sufficient for (C) to hold. For example, this happens in
the case of the generalised Beverton–Holt map [5],

f (y) =
λy

1 + (y/K)β
, K > 0, λ > 0, β > 0,

or the Hassel map [6],

f (y) =
λy

(1 + y/K)β
, K > 0, λ > 0, β > 0.

Generalised Beverton–Holt (also called Maynard-Smith) and Has-
sel maps have been extensively employed in ecological modelling.
Moreover, the corresponding dynamics are well known. Interest-
ingly, these maps have the very desirable property, as have many
others density dependences, that the corresponding global dynam-
ics can be characterised by the local dynamics [7], i.e. local stabil-
ity guarantees global stability. This naturally raises the question of
whether or not condition (C) can be relaxed.

In this paper, we show that the sector condition (C) is not neces-
sary to establish the existence of a positive global attractor for sys-
tem (2) when A and b are given by (4). We prove that, in this case,
it is sufficient that the scalar difference equation (7) has a positive
global attractor y∗. This will allow us to use well-known sufficient
conditions for global stability for maps to formulate easily verifi-
able conditions for the existence of a positive global attractor for

Fig. 1. The sector region, in the case p = 1, appears in light brown colour. Observe
that condition (C) is not satisfied: neither by the generalised Beverton–Holt map
with K =

5
√
5/3, λ = 8/5, β = 5 (solid red curve) nor by the Hassel map with

K = 1/24, λ = 125, β = 3/2 (dashed blue curve). For the chosen parameters
y∗

= 1 is the unique positive solution of the equation f (y) = y and |f ′(1)| < 1 for
both maps.

system (2) with A and b as in (4). We illustrate this idea with two
different conditions which involve Schwarzian derivatives and en-
velopments by linear fractional functions.

Our approach is different from that in [4] which is essentially
based on arguments of small-gain type. Indeed, small-gain and ab-
solute stability arguments do not apply to the nonlinearities con-
sidered in this paper. Instead,we exploit that, in our particular case,
system (2) can be reduced to an n-th order scalar difference equa-
tion with dynamics dominated by those of a first-order difference
equation (see [8,9] and references therein).

2. Preliminaries

We start with some definitions. For a continuous map F :Rn
+

→

Rn
+
, consider the difference equation

xt+1 = F(xt), t ≥ 0, (8)

with initial condition x0 ∈ Rn
+
. We say that a non-zero equilibrium

x∗
∈ Rn

+
of Eq. (8) is a global attractor if, for every x0 ∈ Rn

+
\ {0},

lim
k→∞

F k(x0) = x∗,

where, as usual, F k denotes the k-fold composition of F with itself.
Similarly, for a continuous map G:Rn

+
→ R+, consider the n-th

order difference equation

yt+1 = G(yt , yt−1 . . . , yt−n+1), t ≥ 0, (9)

with initial conditions y0, . . . , y1−n ∈ R+. We say that y∗
∈ R+ is

an equilibrium of Eq. (9) if y∗
= G(y∗, . . . , y∗), andwe say that such

a non-zero equilibrium is a global attractor if

lim
k→∞

yk = y∗,

for every solution {yk}k≥1−n of Eq. (9) with initial conditions such
that (y0, . . . , y1−n) ∈ Rn

+
\ {0}.

For both Eqs. (8) and (9), we say that a non-zero equilibrium is
a global stable attractor if it is a global attractor and it is stable.

Whilst we are mainly interested in studying the case in which
A and b are of the form (4), in this section we deal with system
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