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a b s t r a c t

This paper studies the robust exponential input-to-state stability (robust e-ISS) for impulsive systems.
New notions of input-to-state exponent (IS-e) and e-property are proposed. Based on the established
relation between IS-e and e-property, and the method of variation of constants formula, the equivalent
conditions for robust e-ISS have been derived. Then the notion of robust event-e-ISS is defined. The
sufficient conditions and the robust regions for robust e-ISS and robust event-e-ISS are also derived by
using the IS-e of every subsystem. It shows the whole system may have robust event-e-ISS while every
subsystem may have no ISS. It also shows the external disturbances may lead to relatively small robust
regions. The results are then specialized to derive the equivalent conditions of interval e-ISS for interval
impulsive systems. As an application, the result is used to test the ISS for a controlled micro-grid.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Input-to-state stability (ISS) analysis aims to investigate how
external disturbance inputs affect the system stability. Since the
notion of ISS was proposed in the late 1980s [1], ISS analysis of dy-
namical systems with disturbances or external inputs has quickly
become one of the active research topics in system analysis and de-
sign. Moreover, ISS has been successfully employed in the stability
analysis and control synthesis of nonlinear systems with distur-
bance inputs and complex structure, see [2–10]. Quite a few recent
works focus on the ISS of impulsive systems, see e.g. [11–19]. In
particular, [11] established the relation between robust stability
and the existence of ISS-Lyapunov functions. However, it should
be pointed out that an ISS-Lyapunov function is not easy to find,
especially for those impulsive systems with unstable subsystems.
And it often requires the impulsive system to have finite number
of time-invariant subsystems. Moreover, there are fewer results of
robust ISS reported.
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The objective of this paper is to study the robust exponential ISS
(robust e-ISS) for impulsive systems with uncertainties. The sys-
tem studied here is time-varying and may have an infinite num-
ber of subsystems. Instead of finding an ISS-Lyapunov function, we
aim to investigate the robust e-ISS from the dynamic characteristic
of subsystems and the hybrid structure of impulsive systems. For
this goal, we propose notions of input-to-state exponent (IS-e) for
general dynamical systems, and e-property for the transition ma-
trix function (TMF) of the nominal system. The relation between
IS-e and e-property is then established. By this relation and the
method of variation of constants formula, the equivalent condi-
tions for the robust e-ISS are derived. In the case of zero external
inputs, the impulsive systemhas robust e-ISS if and only if its nom-
inal system is exponentially stable or if and only if the TMF has
negative e-property. In the case of non-zero external inputs, the
minimal dwell time (MiDT) condition is necessary to derive such
equivalent conditions for the robust e-ISS. Then the notion of ro-
bust event-e-ISS is given. And the sufficient conditions for the two
types of robust e-ISS including robust regions are derived via us-
ing IS-e of every subsystem. It shows the whole system may have
robust event-e-ISS while every subsystem has no ISS. Themaximal
dwell time (MaDT) condition is used when there exist subsystems
with no ISS. It also shows the external inputsmay lead to relatively
small robust regions comparedwith no external inputs. The results
are then specialized to derive the equivalent conditions of interval
e-ISS for interval impulsive systems.
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As an application, the result is applied to power systems.
Recently, the expected high depth of penetration of distributed
generation (DG) in the utility distribution grid has brought
about concepts of ‘‘micro-grid’’ and ‘‘smart grid’’, see [20,21].
The full benefits of high depth of penetration of DG units are
gained if a micro-grid can be operated in both grid-connected
and islanded modes [22]. Moreover, the non-50/60 Hz power
output of many DG units means that power-electronic converter
interfaces are required [23]. However, the switching between
grid-connected and islanded modes and switching operation of
converter interfaces, result in hybrid behavior between continuous
dynamics and switching events in amicro-grid or smart grid. Thus,
a micro-grid is a typical impulsive hybrid system, see [24]. In a
micro-grid, in order to enable an electronically-interfaced DG unit
and its local load to retain uninterrupted power supply (UPS) in
both grid-connected and islanded modes, the main problem is to
how to control the coupling voltage-sourced converter (VSC). In
this paper, we present a hybrid control for a VSC which is used in
the UPS application. Thenwe use the obtained results on impulsive
systems to test the ISS for the controlled micro-grid.

The rest of this paper is organized as: In Section 2, we give the
preliminaries. In Section 3, we give the equivalent conditions of
robust e-ISS. In Section 4, we specialize the results to the interval
impulsive systems. In Section 5,we study the application onmicro-
grids. Conclusions are in Section 6.

2. Preliminaries

Let Rn denote the n-dimensional real vector space, R+
=

[0,+∞), and N = {0, 1, 2, . . .}. Let PC[R+,R] denote the
class of piecewise continuous functions from R+ to R, with
discontinuities of the first kind. For a matrix A = (aij)m×n, let
∥A∥ = [λmax(ATA)]

1
2 , ∥A∥1 = max1≤j≤n{

m
i=1 aij} and ∥A∥∞ =

max1≤i≤m{
n

j=1 aij}. Let λi(X), i = 1, . . . , n, be all eigenvalues of
then×nmatrixX andλmax(X) (λmin(X)) themaximum(minimum)
of λi(X).

For a subset I ⊆ R+, let X |I denote the limitation of X on I, i.e.,
X |I : I → Rn×n. For a constant a > 0, we denote the set of matrix
functions:

Ωa , {X |X : R+ → Rn×n, ∥X(s)∥ ≤ a, ∀s ∈ R+}.

For constant α ∈ R, we define: B(α) =


1, α ≥ 0,
0, α < 0.A function

ψ : R+ → R+ is of class-K (ψ ∈ K) if it is continuous, zero at
zero and strictly increasing. It is of class-K∞ if it is of class-K and
is unbounded. A function ϕ : R+ × R+ → R+ is of class-KK if
ϕ(·, t) is of class-K for t ≥ 0 and ϕ(s, ·) is of class-K for s ≥ 0.
And for a functionw : R+ → Rn, and t0, t, t̂ ∈ R+ with t0 ≤ t ≤ t̂ ,
define ∥w∥[t] = sups∈[t0,t]{∥w(s)∥}, ∥w∥[t,t̂] = sups∈[t,t̂]{∥w(s)∥},
and ∥w∥∞ = supt≥t0,t∈R+

{∥w∥[t]}.
Consider the impulsive system with form:

S1 :


ẏ(t) = Ak(t)y(t)+ Ãk(t)y(t)+ ωc(t),

t ∈ Ik = (tk, tk+1],

1y(t) = Ck(t)y(t)+ C̃k(t)y(t)+ ωd(t),
t = tk, k ∈ N,

(1)

where 1y(t) = y(t+) − y(t); Ak(t), Ck(t) ∈ Rn×n are known
matrices; Ãk(t), C̃k(t) are uncertain matrices; ωc, ωd are the exter-
nal inputs with ∥ωc∥∞ < +∞, ∥ωd∥∞ < +∞; Ik = (tk, tk+1]

where {tk : k ∈ N} is the impulsive instant sequence satisfying
0 ≤ t0 < t1 < · · · < tk < tk+1 < · · ·.

We assume the solution to S1 exists globally and uniquely on
[t0,∞) and is continuous except at tk, k ∈ N , at which it is left-
hand continuous, i.e., y(tk) = y(t−k ). Let y(t) = y(t, t0, y0, ωc, ωd)

be the solution of S1 with initial condition y(t+0 ) = y0. For S1, there

are several special cases: if Ãk = C̃k = 0, i.e., no uncertainmatrices,
then

S2 :


ẏ(t) = Ak(t)y(t)+ ωc(t), t ∈ Ik,
1y(t) = Ck(t)y(t)+ ωd(t), t = tk, k ∈ N;

(2)

and if Ãk = C̃k = 0 and ωc = ωd = 0, then S1 is changed to its
nominal system:

S3 :


ẋ(t) = Ak(t)x(t), t ∈ Ik,
1x(t) = Ck(t)x(t), t = tk, k ∈ N. (3)

For every k ∈ N, we also consider the related linear system on Ik
as:

S4 : ẋ(t) = Ak(t)x(t), t ∈ Ik. (4)

Definition 2.1. System S1 is said to have robust exponential ISS
(robust e-ISS) with decay rate α > 0 if there exist constants
γk > 0, βk > 0,M > 0, Kc > 0, Kd > 0 such that for any
Ãk|Ik ∈ Ωγk , C̃k|Îk ∈ Ωβk ,

∥y(t)∥ ≤ Me−α(t−t0)∥y0∥ + Kc∥ωc∥∞ + Kd∥ωd∥∞,

t ≥ t0, t ∈ Ik, k ∈ N. (5)

Remark 2.1. (i) If S1 has robust e-ISS, then under ωc = ωd =

0, S1 is robustly exponentially stable. In the literature, some
replaced ∥ω∥∞ by ∥ω∥[t].

(ii) In the literature for robustness of linear systemwith uncertain
matrices Ãk and C̃k, it is often assumed there exist common
matrices E and F such that

[Ãk, C̃k] = E[ΣÃk
,ΣC̃k

]F

with ΣT
XΣX ≤ I, X = Ãk, C̃k. If this assumption holds, then

robust regions of Ãk and C̃k in Definition 2.1 are:Ωγk = Ωβk =

Ωa, where a = ∥E∥ ∥F∥.

Now, we introduce the notion of input-to-state exponent (IS-e)
for the general system:

ẋ(t) = f (t, x(t), u(t)), t ≥ t0, (6)

where x(t) is the state, u(t) is the external input, and function f
satisfies the required conditions such that the solution to (6) exists
uniquely.

Definition 2.2. (i) System (6) is said to have input-to-state
exponent (IS-e) if there exist K > 0, α ∈ R, and ϕ ∈ KK
such that the solution x(t) satisfies

∥x(t)∥ ≤ Keα(t−t0)∥x(t0)∥ + ϕ(∥u∥[t], (t − t0)B(α)),
t ≥ t0. (7)

(ii) In (7), system (6) is said to have input-to-state positive exponent
(IS-e+) if α > 0, input-to-state zero exponent (IS-e0) if α = 0,
and input-to-state negative exponent (IS-e−) if α < 0.

Definition 2.3. System S1 is said to have IS-e with exponent α if
for someM > 0, and ϕc, ϕd ∈ KK ,

∥y(t)∥ ≤ Meα(t−t0)∥y0∥ + ϕc(∥ωc∥[t], (t − t0)B(α))

+ϕd(∥ωd∥[t], (t − t0)B(α)).

And S1 is said to have IS-e+ if α > 0, IS-e0 if α = 0, and IS-e− if
α < 0.

Remark 2.2. (i) The notion of IS-e+ characterizes possible expo-
nential growth of the state and exponential propagation of the
disturbance. It is related to the notion of forward completeness
of nonlinear system, see [25] and [26].
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