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1. Introduction

For a discrete-time dynamical system, this paper deals with a
set which consists of Lyapunov stable equilibria, each of which
is surrounded by points from where trajectories converge to one
of these equilibria. Such equilibria were called semistable in [1].
Semistability in this sense was then studied in [2-5], and more.
The term “semistability”, in a sense related to partial stability and
different from [1], was discussed in Russian control literature; see
the survey [6]. The term was also used by [7] and related works
to represent a property of an equilibrium weaker than Lyapunov
stability, in the setting of abstract and set-valued dynamical
systems. Some results of [7] are related to preliminary results here;
see Remark 2.11. This paper uses the term pointwise asymptotic
stability to characterize a set consisting of semistable, in the sense
of [1], equilibria. The goal is to establish robustness of pointwise
asymptotic stability to perturbations in dynamics and characterize
this robustness through regularity of appropriate Lyapunov-like
mappings.

Sufficient conditions for pointwise asymptotic stability, for dif-
ferential equations [1] and then for differential inclusions [3], were
given in terms of classical Lyapunov functions and non-tangent, to
the set of equilibria, behavior of trajectories. A converse Lyapunov
result for differential equations was obtained in [2]; this converse
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result does not result in a sufficient Lyapunov condition. A differ-
ent approach, inspired by [8] where the decrease of a set-valued
mapping was proposed as a sufficient condition for consensus, was
pursued by the author in [9]. Necessary and sufficient Lyapunov-
like conditions for pointwise asymptotic stability and a related
invariance principle were given there in terms of a set-valued
Lyapunov-like mapping. Some results of [9] are recalled in Sec-
tion 3. Robustness of pointwise asymptotic stability has received
limited treatment. The converse result of [2] was used in [10] to
state robustness to higher-order perturbations under homogeneity
assumptions. This robustness result included assumptions on Lya-
punov stability of the equilibria for the perturbed, not just nominal,
dynamics. A related result was given in [ 11] for a switching system.

For the classical concept of asymptotic stability, the equivalence
of asymptotic stability to the existence of Lyapunov functions, with
further relation between robustness of the asymptotic stability
or regularity of the dynamics to the continuity or smoothness
of Lyapunov functions, is well-appreciated. In particular, the
equivalence of robustness of asymptotic stability of an equilibrium
and the existence of a smooth Lyapunov function in the setting of
nonlinear and multivalued dynamics was exhibited first in [12], in
the setting of differential inclusions. This was later carried over to
asymptotic stability of sets [13], to difference inclusions [14], and
hybrid dynamics [15].

The contribution of this paper is showing the equivalence of
robustness of pointwise asymptotic stability to the existence of
continuous set-valued Lyapunov functions, in the setting of mul-
tivalued, but continuous in an appropriate sense, discrete-time
dynamics and for a compact set of equilibria. This is shown in
Theorem 4.3. Because continuous set-valued Lyapunov functions
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exist for pointwise asymptotically stable sets when the dynamics
are continuous, for such dynamics the pointwise asymptotic stabil-
ity of compact sets is always robust to sufficiently small perturba-
tions. This is stated in Corollary 4.5 and appears to be a new result
even in the single-valued case, where the dynamics are given by a
continuous function.

The relevance of pointwise asymptotic stability for the analysis
of consensus algorithms has been discussed, for example, in [2,10].
The issue of robustness of consensus algorithms has seen treat-
ment in the literature, with the focus on convergence and not Lya-
punov stability of consensus/equilibrium states and most often
with robustness to changes of communication topology in time or
to delays. Examples in Section 2 illustrate how state-dependent
changes in communication topology fit in the framework of this
paper and hint at applications of the robustness results to consen-
sus problems. Furthermore, Example 2.5 suggests potential appli-
cation of the results to analysis of optimization algorithms.

The paper is organized as follows. Section 2 introduces point-
wise asymptotic stability and other basic concepts, and collects
preliminary results on the behavior of solutions to a difference in-
clusion in the presence of a pointwise asymptotically stable closed
set. In particular, results on continuous or semicontinuous depen-
dence of the reachable set and of the limits of solutions on ini-
tial points are given. Section 3 introduces set-valued Lyapunov
functions and employs them in necessary and sufficient conditions
for pointwise asymptotic stability. A key observation here is that
continuous set-valued dynamics lead to a continuous set-valued
Lyapunov function. Section 4 states and proves the main result,
Theorem 4.3.

2. Setting and basic results

Throughout the paper, a difference inclusion
xt e F(x), (1)

is considered, where F : R" = R" is a set-valued mapping, i.e., for
every x € R", F(x) is a subset of R". The function ¢ : Ny — R",
where Ny = N U {0}, isasolution to (1) from the initial point& € R"
if $(0) = & and, foreveryi € N, ¢(i) € F(¢(i — 1)). The set of all
solutions to (1) from & is denoted as §(£). Givenaset C C R", $(C)
is the set of all solutions to (1) from points in C, $(C) = Uéec $(&).

One motivation for considering set-valued dynamics, following
Krasovskii [16] and Filippov [17], is the link between set-valued
regularization of discontinuous dynamics and the effect on such
dynamics of perturbations, as shown in [18,19] for differential
equations and in [20] for hybrid systems, which encompass
difference equations and inclusions used here. The example below
illustrates this.

Example 2.1. Let x{, x>, ..., Xx; € R™ represent states of I agents.
Suppose that each agent changes its position following the rule:
find the average state of all agents, including myself, whose states
differ less than 1 from my state and move half-way towards this
average. This and similar dynamics have seen treatment in the
literature, with the origins going back to [21,22]; see the extensive
discussion in [23]. In the simple case of two one-dimensional
agents, dynamics are given by the function f (x) equal to

(x1, X2) if [x; — x| > 1
3x +1x 1x +3x if |1 — x| < 1
- —Xy, — - i — x| < 1.
0T e gt R 1— X2

The set-valued regularization of this discontinuous f is given by the
set-valued mapping F whose graph is the closure of the graph of f.
Alternatively, F is the “smallest” outer semicontinuous, as defined

below, mapping such that f (x) € F(x) for every x € R". Explicitly,
F(x) is

(X1, %2) if |xg — x| > 1
3x1 X2 X1 3x; .

X1, — +— ¢t X 1xp, — + — if|[x; —x3] =1
{ v + 4} { 27 + 2 } X1 — X2

3X1 X2 X1 3X2 .

—+ -, — 4+ — if |x; — x 1.
<4+44+4) X1 —x2| <

The Cartesian product representing F(x) when |x; — x| = 1

contains four points and represents the fact that under small
perturbations, or measurement error if this is cast as a feedback
control problem, agent x; can either move or remain stationary,
andsocanx,. A

Let M : R" = R" be a set-valued mapping. Let x € R". Then M
has a nonempty value at x if M(x) # @. M is outer semicontinuous
(osc) at x if for every sequence x; — x, every convergent sequence
yi € F(x;), one has lim;,oy; € F(x). It is continuous at x if,
additionally, for every y € F(x), every sequence x; — X, there exist
¥;i € F(x;) such that the sequence y; converges and lim;_, », y; = y.
The mapping M is locally bounded at x if there exists a neighborhood
U of x such that F(U) = |, F(2) is bounded. If M has compact
values and is locally bounded at x, then osc at x is equivalently
described by: for every ¢ > 0 there exists § > 0 such that
F(x 4+ éB) C F(x) + B, which means that for every z € x + 8B,
F(z) C F(x) + &B. Here B is the closed unit ball in R", and so
zZ € x + 6B means that z is in a closed ball of radius § around x,
i.e,, |z — x|| < §. The additional condition for continuity of such
M at x is: for every ¢ > 0 there exists § > 0 such that, for every
Z€x+ 0B, F(x) C F(z) + ¢B.

Throughout the paper, the following assumption is posed. It
ensures, among other things, that solutions to (1) exist.

Assumption 2.2. The set-valued mapping F : R" = R" has
nonempty values and is locally bounded at every x € R".

For ] € Ny, consider the finite-horizon reachable set

R (€) ={p() | ¢ € 8(5),j€{0,1,....]}}.

When F is locally bounded, then R is locally bounded, and then,
if F is osc or continuous then so is R<;. This can be verified
directly, but also follows from the representation R;(§) =
(£} UF(§) UF?(@) U --- U F/(&) and results about unions and
compositions of set-valued mappings, 24, 4.31, 5.52]. The infinite-
horizon reachable set

RE = ry®

JeNo

does not inherit regularity properties from F, in fact, R (&) can fail
to have closed values even if F is a continuous function. Better
regularity properties hold for the closure of the reachable set,
i.e,, the mapping R : R" = R" given by

R(E) = RE).

2.1. Pointwise asymptotic stability

A set consisting of equilibria which are semistable in the termi-
nology of [1], i.e., a set consisting of Lyapunov stable equilibria and
surrounded by points from which solutions converge to some equi-
librium in the set, will be called pointwise asymptotically stable.
Below, rge ¢ denotes the range of the solution ¢, so, for example,
rge ¢ C a+ ¢B means that ¢(j) € a + B for every j € No.

Definition 2.3. The set A C R" is locally pointwise asymptotically
stable (PAS) for (1) if
e every a € Ais Lyapunov stable for (1), that is, for every a € A,
every ¢ > 0 there exists § > 0 such thatrge¢ C a + ¢B for
every ¢ € 4(a+ 6B), and
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