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a b s t r a c t

This paper proposes a decoupling strategy for the Distributed Model Predictive Control (DMPC) for a
network of dynamically-coupled linear systems. Like most DMPC approaches, the proposed approach has
a terminal set anduses a Lyapunovmatrix for the terminal cost in the online optimizationproblem for each
system. Unlike them, the terminal set changes at every time step and the Lyapunov matrix is not block-
diagonal. These features result in a less conservative DMPC formulation. The proposed method is easy to
implement when the network is strongly connected (or when a central collector is used). Otherwise, the
computations of the terminal set require the online solutions of a series of linear programming problems
but can be speeded up significantly by preprocessing. Numerical examples showing these results are
provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the Distributed Model Predictive Control
(DMPC) of a network ofM systems, each of which is of the form

xi(t + 1) =


j∈ZM

Aijxj(t) + Biui(t), (1)

xi(t) ∈ X i, ui(t) ∈ U i, i = 1, . . . ,M, t ∈ Z+ (2)

where xi ∈ Rni , ui
∈ Rmi are the state and input of the ith system,

Aij
∈ Rni×nj is the systemdynamics relating xi and its coupled states

of xj, X i and U i are the corresponding state and control constraints
respectively.

The study of DMPC of network system has received consider-
able attention recently and several approaches have beenproposed
for its solution, see [1–7]. One typical approach is to treat the Aijxj
where i ≠ j as a disturbance to the i system, see [8–11]. Others
(Chapter 7 and 11 of [4,12]) propose the use of the dual decom-
position approach to handle the coupled dynamics. In these ap-
proaches, appropriate terminal constraints and terminal costs are
needed; the choices ofwhich are also active research areas. Clearly,
and the most conservative choice of the terminal constraint is the
origin [13–15]. Less conservative approaches include the use of a
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static ellipsoidal terminal sets [16–18] and a time-varying ellip-
soidal set induced from a block diagonal Lyapunovmatrix [5,19]. In
the latter case, each diagonal block of the Lyapunovmatrix also de-
termines the terminal cost function of the corresponding system.
In caseswhereM is small ormoderate, restricting Lyapunovmatrix
to be block-diagonal can be restrictive. This work focuses on such
systems and proposes an approach that differs from the previous
in several distinctive ways: the Lyapunov matrix is non-diagonal
(when it exists), the terminal set is time varying and moves within
the maximal constraint admissible invariant set of the overall sys-
tem. These features are possible under appropriate assumptions
and additional computations. The implementation of the proposed
approach is easiest when the network is strongly connected or
when a central collector is used. When this is not the case, addi-
tional linear programming (LP) problems are needed. Fortunately,
these computations can be speeded up significantly using prepro-
cessing.

This work does not address the algorithmic details for the
numerical determination of the non block-diagonal Lyapunov
matrix or the consensus algorithm of the DMPC problem as they
are standard in the literature, see for example [4,12].

The rest of the paper is organized as follows. This section ends
with the notations needed, followed by the next section on the
review of preliminary results of and additional notations for the
DMPC problem. Section 3 discusses the choice of the distributed
stage and terminal cost functions and the decomposition of the
terminal set, including the solutions of a series of LP problems. The
feasibility and stability of the overall system is shown in Section 4.
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Section 5 describes preprocessing steps that result in significant
saving in the computations of the series of LP. Several numerical
examples, including one for which a diagonal Lyapunov matrix
does not exist, are provided Section 6. The last section concludes
the work.

The notations used in this paper are as follows. Non-negative
and positive integer sets are indicated by Z+

0 and Z+ respectively
with ZM

:= {1, 2, . . . ,M} and ZM
L := {L, L + 1, . . . ,M},M ≥ L,

M, L ∈ Z+

0 . Similarly, R+

0 and R+ refer respectively to the sets of
non-negative andpositive real number. In is ann×n identitymatrix
and int(·) refers to the interior of a set. Given σ > 0 and X ⊂ Rn

with 0 ∈ int(X), σX = {σ x : x ∈ X}. The p-norm of x ∈ Rn is
∥x∥p while ∥x∥2

Q = xTQx for Q ≻ 0. For a square matrix Q , Q ≻

(≽)0 means Q is positive definite (semi-definite). Given a set of
vectors, c i ∈ Rn, i ∈ ZM , the collection of vectors, (c1, c2, . . . , cM)
also refers to the stack vector of [(c1)T (c2)T · · · (cn)T ]T ∈ RMn

for notational simplicity. Let Ω ⊂ ZM be an index set, |Ω| is its
cardinality and cΩ

:= {c i : i ∈ Ω} is the collection of vectors (or
stacked vector) of c i with i ∈ Ω . Several representations of the
states and controls are needed: xi(t), ui(t) refer to the state and
control of the ith system at time t; xik, u

i
k are the kth predicted

state and control of the ith system; x = (x1, x2, . . . , xM), u =

(u1, u2, . . . , uM) are the collections of xi and ui over theM systems;
boldface xi = (xi0, x

i
1, . . . , x

i
N), ui

= (ui
0, u

i
1, . . . , u

i
N−1) are the

collections of the N predicted states and predicted controls over
the horizon (of length N) for the ith system; in situation where
the reference to time is needed, xik, u

i
k can be written as xik|t and

ui
k|t . Hence, x

i
0|t = xi(t) and ui

0|t = ui(t). Additional notations are
introduced as required in the text.

2. Preliminaries

Combining all the M systems of (1), the overall system is

x(t + 1) = Ax(t) + Bu(t), t ∈ Z+

0 (3)
x(t) ∈ X, u(t) ∈ U (4)

where x = (x1, x2, . . . , xM) ∈ Rn, u = (u1, u2, . . . , uM) ∈ Rm are
the overall states and controls of the full systemwith n =


i∈ZM ni

and m =


i∈ZM mi. Also, A ∈ Rn×n is a block matrix with its (i, j)
block being Aij

∈ Rni×nj and B ∈ Rn×m is a block diagonal matrix
with blocks {B1, B2, . . . , BM

} and Bi
∈ Rni×mi . The constraint sets

of X and U are

X := X1
× X2

× · · · × XM , U := U1
× U2

× · · · × UM . (5)

The connection among the systems is static and can be represented
as a networkwith its structure captured in a set of pairwise indices,

D := {(i, j) : Aij
≠ 0}, (6)

indicating adjacency relationship among the M systems. The
connection among the M systems is assumed to be arbitrary and,
hence, A is not symmetric. However, the scheme proposed in this
work requires the states of system i be communicated to all its
neighbors. For this reason, define the set of neighbors of i, including
i, as

Ωi := {j : (i, j) ∈ D or (j, i) ∈ D} ∪ {i}. (7)

In general, |Ωi| < M . When |Ωi| = M for all i ∈ ZM , the network
is strongly connected in the sense that each system is a neighbor
of every other system. Several other variables, sets and states can
be defined based on Ωi and its complement:

nΩi : =


j∈Ωi

nj, nΩ i
:= n − nΩi , Ω i := ZM

\ Ωi, (8)

xΩi : = {xj : j ∈ Ωi} ∈ RnΩi , xΩ i := {xj : j ∈ Ω i} ∈ Rn
Ω i . (9)

The variables ui, xi, xΩi and xΩ i can be extracted from u and x
respectively from

ui
:= F iu, xi := S ix, xΩi = E ix, xΩ i = E

i
x (10)

where F i
∈ {0, 1}mi×m, S i ∈ {0, 1}ni×n, E i

∈ {0, 1}nΩi×n and E
i
∈

{0, 1}nΩ i
×n are the appropriate selection matrices. From (10) and

the fact that [(E i)T (E
i
)T ]T is a permutation matrix,

Aij
= S iA(S j)T ,


xΩi

xΩ i


=


E i

E
i


x,

x =


E i

E
i

−1 
xΩi

xΩ i


:= H ixΩi + H

i
xΩ i

(11)

where E iH i
= InΩi

, E
i
H

i
= In

Ω i
, E iH

i
= 0, E

i
H i

= 0.
Assumptions of the system, needed in the sequel, are given

below.

A1. The sets X i and U i, i ∈ ZM are polytopes and contain the origin
in their respective interiors.

A2. There is no delay or loss of information during communication
between system i and all its neighbors.

A3. Matrices A and B are known to all systems.
A4. The set of M systems (or nodes) with edges defined by (7)

forms an undirected and connected graph.

Both A1 and A2 are mild assumptions and are standard
requirement in DMPC. Assumption A3 is needed as the models of
the overall system are used to estimate the size of the terminal
set at time t by system i. Assumption A3 may be hard to be
satisfied when the network consists of heterogeneous systems.
But in the typical case where most systems are similar or are
members of only a few distinctly different classes of system, A3
is not a strong assumption. Assumption A4 defines the scope of the
systems considered in this work. Suppose A4 is violated and the
set of M systems has 2 or more connected components, then the
approach described hereafter can be applied to them individually.

2.1. Central MPC

As a comparison for DMPC, a centralized MPC (CMPC) problem
is needed. The CMPC assumes that the system given by (3) is solved
via a single online finite horizon optimization problem of the form

V ∗

N (x) = min
u

VN(x, u) := min
u

N−1
k=0

l(xk, uk) + lf (xN) (12a)

s.t. xk+1 = Axk + Buk, xk ∈ X, uk ∈ U, xN ∈ Xf , x0 = x, k ∈ ZN−1
0

where N is the prediction horizon, x := {x0 x1 · · · xN}, u :=

{u0 u1 · · · uN−1} are the predicted states and inputs respectively, X
and U are those given by (5) and Xf is an appropriate terminal set.
In this setting, CMPC is like a standard MPC problem without any
constraints introduced by Ωi and has the stage and the terminal
costs being

l(xk, uk) = ∥xk∥2
Q + ∥uk∥

2
R, lf (xN) = ∥xN∥

2
P (13)

for some appropriate matrices Q , R, P ≻ 0 and a scalar δ > 0 that
satisfy

(A + BK)TP(A + BK) − P ≼ −(Q + K TRK) − δIn (14)

for some stabilizing K . In addition, lf : Xf → R0 is defined on

Xf := {x ∈ Rn
|Gx ≤ 1L}. (15)
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