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a b s t r a c t

In this paper, we consider stabilization of multi-dimensional linear systems driven by Gaussian noise
controlled over parallel Gaussian channels. For such systems, it has been recognized that for stabilization
in the sense of asymptotic stationarity or stability in probability, Shannon capacity of a channel is an
appropriate measure on characterizing whether a system can be made stable when controlled over the
channel. However, this is in general not the case for quadratic stabilization. On a related problem of joint-
source channel coding, in the information theory literature, the source-channel matching principle has
been shown to lead to optimality of uncoded or analog transmission and when such matching conditions
occur, it has been shown that capacity is also a relevant figure ofmerit for quadratic stabilization. A special
case of this result is applicable to a scalar LQG system controlled over a scalar Gaussian channel. In this
paper, we show that even in the absence of source-channel matching, to achieve quadratic stability, it
may suffice that information capacity (in Shannon’s sense) is greater than the sum of the logarithm of
unstable eigenvalue magnitudes. In particular, we show that periodic linear time varying coding policies
are optimal in the sense of obtaining a finite second moment for the state of the system with minimum
transmit power requirements for a large class of vector Gaussian channels. Our findings also extend the
literature which has considered noise-free systems.

© 2015 Elsevier B.V. All rights reserved.

1. Problem formulation

Consider the following linear time invariant system:

X̄t+1 = AX̄t + BŪt + W̄t , t ∈ N, (1)

where X̄t ∈ Rn is a state process, Ūt ∈ Rn is a control process,
W̄t ∈ Rn is an independent and identically distributed sequence
of Gaussian random variables with zero mean and covariance
KW . The system matrix A and the input matrix B are of appro-
priate dimensions and we assume that the pair (A, B) is control-
lable. Let {λ1, λ2, . . . , λn} be the eigenvalues of the system matrix
A. Without loss of generality we assume that all the eigenvalues
of A are outside the unit disc (1 ≤ |λi| < ∞ for all i), i.e., all
modes are unstable. The initial state of the system X0 is assumed
to be a random variable with zero mean and covariance Λ0 with
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Trace {Λ0} < ∞. The initial state X0 is assumed to be indepen-
dent of the plant noise variable W̄t . Consider the scenario depicted
in Fig. 1, where a sensor observes an n-dimensional state process
and transmits it to a remote controller overm parallel independent
Gaussian channels. At any time instant t , St :=


s1,t , s2,t , . . . , sm,t


and Rt :=


r1,t , r2,t , . . . , rm,t


are the input and output of the chan-

nel, where ri,t = si,t + zi,t and zi,t ∼ N (0,Ni) are zero mean
white Gaussian noise components with N1 ≤ N2 ≤ · · · ≤ Nm.
We assume that there is a noiseless causal feedback link from the
controller to the sensor and the plant. Let ft : R(n+m)t+n

→ Rm

denote the sensing policy such that St = ft(X[0,t], R[0,t−1]), where
X[0,t] := {X0, X1, . . . , Xt} and the sensor is assumed to have an
average transmit power constraint E[∥St∥2

] ≤ PS . Further, let
πt : Rm(t+1)

→ Rn be the controller policy, then we have Ut =

πt

R[0,t]


. The common goal of the sensor and the controller is to

stabilize the system (1) in the mean square sense, defined as fol-
lows.

Definition 1.1 ([1, Definition 2.2]). A system is said to be mean
square stable if there existsM < ∞ such that supt E[∥Xt∥

2
] < M .

http://dx.doi.org/10.1016/j.sysconle.2015.09.013
0167-6911/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2015.09.013
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2015.09.013&domain=pdf
mailto:zaidi@kth.se
http://dx.doi.org/10.1016/j.sysconle.2015.09.013


A.A. Zaidi et al. / Systems & Control Letters 88 (2016) 32–38 33

Fig. 1. Control over parallel Gaussian channels.

Literature review. Stabilization of linear systems over commu-
nication channels has been studied in [2–4,1,5–17]. If the goal is
stabilization in the sense of asymptotic mean stationarity [18] or
similar notions such as stability in probability [1,6], Shannon ca-
pacity is the right measure on what is possible or not (see [18] for
a detailed account of such results in the literature). But if the goal
is stabilization in the sense of having finite second moments, then
Shannon capacity may not the right measure [1].

A related, but different problem, is the joint source-channel
coding problem. In this context, the Gaussian source-channel
setting is an important special case due to the possible mean-
square optimality of linear coding policies as a consequence of
what is known as source-channel matching [19–21]. Using the
data-processing theorem of information theory and dynamic pro-
gramming (see e.g. [20,22,18]), it can be shown that when source-
channel matching occurs, linear coding policies for controlled
linear Gaussian sources are optimal for the minimization of
quadratic distortion measures across Gaussian channels. How-
ever, such a source-channel matching does not apply in a large
class of settings involvingmulti-dimensional sources and channels
[23–26]. Along a similar context, we note that recent work [27] has
obtained structural properties of channels which can be used to re-
alize optimal causal channel codes for a class of multi-dimensional
Gaussian sources with memory.

In the control literature, these problems have been considered
where the sufficiency of information capacity1 being greater than
a lower bound has been observed in a class of settings [10–12],
which, however, consider noise-free plants. It is observed in [11]
that LTI schemes are not optimal for stabilization over paral-
lel channels. For optimal encoding in the unmatched case, lin-
ear encoding is also not optimal in general [29,30]. Even in the
class of memoryless coding schemes, linear coding is not optimal
for the transmission of memoryless Gaussian sources over mem-
oryless Gaussian channels with quadratic distortion measures
[23,25,31,32].

That a scalar Gaussian channel allows for stability when its in-
formation capacity is greater than the sum of the logarithm of un-
stable eigenvalue magnitudes of a linear system, not only in the
sense of ergodicity but also in the sense of quadratic stability, is
not surprising. The reason for this argument is that for such chan-
nels, the data processing inequality arguments lead to the optimal-
ity of linear coding and decoding policies for the minimization of
the quadratic estimation error for the state (see Chapter 11 in [18]).
One can also show that for a scalar Gaussian channel, the error ex-
ponentwith feedback is not bounded [33–35] and using arguments
in [1,14,18], one expects that quadratic stability is possible even for
systems driven by unbounded noise.

Results on controlling a vector linear system over a scalar
Gaussian channel have been obtained in [36] confirming this
line of thought, where linear time-varying policies have been

1 The definition of information capacity for Gaussian channels can be found in
page 263 in [28].

shown to be sufficient for mean-square stability. However, there
does not exist result in the literature that considers noisy multi-
dimensional linear systems controlled over multi-dimensional
Gaussian channels. For such channels, in general, the information
theoretic approach based on the data-processing inequality does
not lead to tight bounds on optimal joint-source-channel coding
schemes, unlike the scalar case.

Contributions of the paper: In this paper, we consider
quadratic (second moment) stabilization of multi-dimensional
linear systems (sources) represented by (1) over vector-valued
Gaussian channels. We show that for a large class of source-
channel pairs, information capacity being greater than the sum
of the logarithm of unstable eigenvalue magnitudes of the linear
system (1) is sufficient for quadratic stability and linear sensing
and control schemes are optimal, even when the source-channel
matching principle does not hold.

In the literature, stabilization results have been presented
for noiseless multi-dimensional plants over multidimensional
channels in [11,12,36,37] and for noisy multi-dimensional plants
over scalar channels in [36]. Our paper extends these results to
more general setups and establishes optimality of linear sensing
and control schemes for the moment stabilization of a wide class
of noisy linear plants over vector Gaussian channels.2

2. Sufficient conditions and a linear time-varying scheme

We have the following sufficiency result.

Theorem 2.1. The system (1) can be mean square stabilized over m
parallel independent Gaussian channels using a linear scheme if there
exist fij ∈ Q such that fij ≥ 0,

m
j=1 fij ≤ 1,

n
i=1 fij ≤ 1 and

log (|λi|) <

m
j=1

fijCj, ∀i ∈ {1, 2, . . . , n}, (2)

where λi are eigenvalues of the system matrix A in (1) and Cj :=

1
2 log(1 +

Pj
Nj

) is the information capacity of jth channel.

Proof. For the proof, we propose a periodic linear time varying
scheme sensing and control scheme. We first give the scheme for
a system with invertible input matrix B, assuming that B = I in
(1): Consider that the control actions in (1) are taken periodically
after every K time steps, i.e., at t = lK − 1 for l ∈ N (Ut = 0
for t ≠ lK − 1). Under this control strategy, the state equation at
t = lK is given by

X̄t+K = AK X̄t + Ūt+K−1 +

K−1
i=0

AK−i−1W̄t+i. (3)

For AK
∈ Rn×n there exist a real non-singular matrix T and a real

matrix Ã such that Ã = T−1AKT = diag

J1, . . . , Jp


, where Jp is a

Jordan block of dimension (algebraic multiplicity) np [39]. A Jordan
block Jp ∈ Rnp×np associatedwith a real eigenvalueλ ofmultiplicity
np has the following form:

Jp =


λ 1

λ
. . .

. . . 1
λ

 , (4)

2 Part of results without proofs have been included in a book chapter that
provides an overview of some recent results on stabilization and control over
Gaussian networks [38].
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