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a b s t r a c t

We study a weak stability property called recurrence for a class of hybrid systems. An open set is
recurrent if there are no finite escape times and every complete trajectory eventually reaches the set.
Under sufficient regularity properties for the hybrid system we establish that the existence of a smooth,
radially unbounded Lyapunov function that decreases along solutions outside an open, bounded set is a
necessary and sufficient condition for recurrence of that set. Recurrence of open, bounded sets is robust
to sufficiently small state dependent perturbations and this robustness property is crucial for establishing
the existence of a Lyapunov function that is smooth. We also highlight some connections between
recurrence and other well studied properties like asymptotic stability and ultimate boundedness.

© 2016 Published by Elsevier B.V.

1. Introduction

Hybrid systems are a class of dynamical systems that combine
continuous-time evolution and discrete-time events. Several
frameworks have been proposed in the literature for analysis of
hybrid systems. We refer the reader to [1–3] for details. Converse
Lyapunov theorems are used to establish the equivalence between
asymptotic stability properties and the existence of Lyapunov-like
functions that satisfy certain decrease conditions along solutions.
Applications of converse theorems in stabilization and robust
stability analysis can be found in [4–6]. For continuous-time
systems converse theorems related to asymptotic stability are
established in [6–8]. See [9–11] for similar results in the discrete-
time case. Converse theorems for asymptotic stability of compact
sets for a class of hybrid systems has been established in [12,13].
In this paper, we establish a converse theorem for a similar class of
hybrid systems considered in [12] but for a weaker property called
recurrence.

Recurrence of an open, bounded set is a weak stability property
that is frequently studied in the literature for stochastic systems.
We refer the reader to [14–16] for details. Loosely speaking,
recurrence of an open, bounded set implies that solutions visit the
set infinitely often with probability one. It is a weaker notion of
stability compared to probabilistic notions of asymptotic stability
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but nevertheless useful in many applications. In particular, for the
problem of RF-source seeking using Micro Aerial Vehicles (MAV)
considered in [17,18], it is shown that asymptotic properties like
convergence are difficult to establish in the presence of persistent
disturbances and recurrence proves to be a useful alternative.

In this paper we study the recurrence property not for
stochastic systems, but for a class of non-stochastic hybrid
systems. To the best of the authors’ knowledge this property
has not been studied in detail for non-stochastic hybrid systems.
Although recurrence is aweak property in the context of stochastic
systems, we show that recurrence of an open, bounded set is
actually equivalent to establishing uniform ultimate boundedness
of solutions for non-stochastic systems. A similar observation is
made for discrete-time deterministic systems in [15], although it
is noted that such an equivalence does not hold true for recurrence
in stochastic systems. The importance of ultimate boundedness
in control design for uncertain systems is explained in [19,20].
We also note that recurrence-like properties are studied for
deterministic systems in [21, Chapter 7] and [22, Chapter 1].

Necessary and sufficient conditions for global recurrence
in terms of Lyapunov functions are established in this work.
For discrete-time stochastic systems with non-unique solutions,
i.e., stochastic difference inclusions, the results in [23] establish
the equivalence between recurrence of an open, bounded set and
the existence of a smooth Lyapunov function that decreases on
average outside the recurrent set. This is achieved by establishing
robustness of recurrence to various state dependent perturbations.
We follow a similar approach in this paper to establish a
converse Lyapunov theorem, but for a class of non-stochastic
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hybrid systems. A converse theorem for a stronger version of
recurrence called positive recurrence is established for discrete-
time stochastic systems in [15] and in [14, Thm 3.26] for a class
of switching diffusion processes.

Converse theorems for recurrence in discrete-time determin-
istic systems is developed in [15, Thm 11.2.1] although the Lya-
punov function generated is merely upper semicontinuous. Using
the robustness of recurrence to various state dependent perturba-
tions we construct a smooth Lyapunov function for the converse
theorem. Robustness of recurrence to sufficiently small perturba-
tions is due to the hybrid system satisfying good regularity prop-
erties. Without the regularity properties, it is not guaranteed that
recurrence or other stability properties are robust. We exploit the
robustness to go from a preliminary non-smooth Lyapunov func-
tion to a smooth Lyapunov function for recurrence by utilizing the
construction in [12]. We also make connections of this property
to asymptotic stability and ultimate boundedness. In [24] a robust
boundedness problem is studied for continuous-time systems that
uses the notion of first hitting times to certain forward invariant
compact sets. In this paper, we will use similar tools, but to study
the recurrence property. Finally, recurrence for non-stochastic sys-
tems has extra consequences compared to the stochastic counter-
part. This paperwill also briefly highlight someof these differences.

The rest of the paper is organized as follows. Section 2 presents
the basic notation and definitions to be used in the paper. Section 3
introduces the hybrid systems framework that will be considered
in the rest of the paper. Section 4 presents the definition of
recurrence and its uniform version. Section 5 makes connections
between recurrence and other well studied properties. Section 6
presents the main results. Section 7 presents an equivalent
characterization of recurrence which will be used to prove the
main results of the paper. The proof of the converse theorem
is presented in Section 7. Section 9 presents some concluding
comments and future work.

2. Notation and basic definition

For a closed set S ⊂ Rn and x ∈ Rn, |x|S := infy∈S |x − y| is
the Euclidean distance of x to S. Let B, Bo denote the closed and
open unit ball in Rn. Given a closed set S ⊂ Rn and ϵ > 0, S + ϵB
represents the set {x ∈ Rn

: |x|S ≤ ϵ}. R≥0 denotes the non-
negative real numbers; Z≥0 denotes the non-negative integers. For
c ≥ 0 and a function V : Rn

→ R≥0, LV (c) := {x ∈ Rn
: V (x) = c}.

A set-valued mapping M : Rp ⇒ Rn is outer semicontinuous if,
for each (xi, yi) → (x, y) ∈ Rp

× Rn satisfying yi ∈ M(xi) for all
i ∈ Z≥0, y ∈ M(x). A mapping M is locally bounded if, for each
bounded set K ⊂ Rp, M(K) :=


x∈K M(x) is bounded. A function

Ψ : Rn
→ R≥0 is upper semicontinuous if for every sequence

{xi}∞i=0 such that xi → x, we have lim supi→∞ Ψ (xi) ≤ Ψ (x). For
S ⊂ Rn, the symbol IS denotes the indicator function of S i.e.,
IS(x) = 1 for x ∈ S and IS(x) = 0 otherwise. For vectors f1, f2 ∈ Rn,
⟨f1, f2⟩ := f T1 f2 denotes the inner product.

3. Preliminaries on hybrid systems

We follow the mathematical framework in [1] for modeling
hybrid systems. As explained in [25, Chapter 1] other models
for describing hybrid systems can be encompassed within the
framework of [1]. So we consider a class of stochastic hybrid
systems considered in [1] with a state x ∈ Rn written formally as

ẋ ∈ F(x), x ∈ C (1a)

x+
∈ G(x), x ∈ D, (1b)

where C,D ⊂ Rn represent the flow and jump sets (where con-
tinuous and discrete evolution of the state is permitted) respec-
tively and F ,G represent the flow and jump maps respectively.

In essence, the continuous-time dynamics is modeled by a differ-
ential inclusion and the discrete-time dynamics is modeled by a
difference inclusion. We consider a very general class of hybrid
systems modeled by set-valued mappings as opposed to single-
valuedmappings as set-valuedmapping arise naturally in the con-
text of robustness analysis and study of ISS properties of hybrid
systems with inputs. We refer the reader to [12,25,1] for more
details.

The solution concept for systems of the form (1) is explained in
detail in [25, Chapter 2]. We define solutions on a generalized time
domain that uses two variables t, j to keep track of the continuous
evolution of the state and the number of jumps elapsed. To define
solutions to (1) we require the notion of a hybrid time domain: a
subset E of (R≥0 × Z≥0), which is the union of infinitely many
intervals of the form [tj, tj+1] × {j}, where 0 = t0 ≤ t1 ≤ t2 ≤ · · ·,
or finitely many of such intervals, with the last one possibly of
the form [tj, tj+1] × {j}, [tj, tj+1) × {j}, or [tj,∞) × {j}. A function
φ : E → Rn thatmaps a hybrid time domain to the Euclidean space
and for which t → φ(t, j) is locally absolutely continuous for fixed
j is called a hybrid arc.

A hybrid arc is a solution to (1) if φ(0, 0) ∈ C ∪ D and:

(1) for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom φ:
φ(t, j) ∈ C, φ̇(t, j) ∈ F(φ(t, j))

(2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ: φ(t, j) ∈

D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution to the hybrid system is called maximal if it cannot
be extended, and complete if its domain is unbounded. We will
represent the hybrid system through its data as

H := (C, F ,D,G). (2)

We denote by SH (K) the set of all maximal solutions starting
from the set K ⊂ Rn for the hybrid system H . We assume
throughout the paper that H satisfies certain regularity properties
listed below.

Standing Assumption 1. The dataH of the hybrid systemsatisfies
the following conditions:

(1) The sets C,D ⊂ Rn are closed.
(2) The mapping F is outer semicontinuous, locally bounded,

convex valued and non-empty on C .
(3) The mapping G is outer semicontinuous, locally bounded and

non-empty on D.

If F ,G are single-valued mappings, then Assumption 1 reduces
to themappings f , g being continuous on C andD respectively. The
main motivation for such assumptions is to ensure that stability
properties are robust for the hybrid system. The robustness
of asymptotic stability to sufficiently small state dependent
perturbations under the conditions of Assumption 1 is established
in [12]. The system (1a) is said to have no finite escape times if there
are no solutions of (1a) that escape to infinity at a finite time. In
the rest of this paper, wewill establish similar equivalences for the
weaker property of recurrence and also illustrate using examples
cases where such equivalences can fail due to the conditions of
Assumption 1 not being satisfied.

4. Recurrence and uniform recurrence

In this section we define the notion of recurrence for sets.

Definition 1. A set O ⊂ Rn is said to be globally recurrent for
the hybrid system H in (2) if there are no finite escape times for
(1a) and for each complete solution φ ∈ SH (C ∪ D), there exists
(t, j) ∈ dom φ such that φ(t, j) ∈ O.
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