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a b s t r a c t

Westudy the stability of an analog optimization circuit that solves quadratic programming (QP) problems.
The circuit dynamics are modeled as a switched affine system. A piece-wise quadratic Lyapunov function
and the KYP lemma are used to derive the stability criterion. The stability criterion characterizes the range
of critical circuit parameters for which the QP circuit is globally exponentially stable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Our renewed interest in analog optimization stems from the
need to achieve a low latency solution forModel Predictive Control
(MPC) [1]. In MPC at each sampling time, starting at the current
state, an open-loop optimal control problem is solved over a finite
horizon. The optimal command signal is applied to the process
only during the following sampling interval. At the next time step
a new optimal control problem based on new measurements of
the state is solved over a shifted horizon. The optimal solution
relies on a dynamicmodel of the process, respects input and output
constraints, and minimizes a performance index. When the model
is linear and the performance index is based on the two-norm,
the resulting optimization problem can be cast as a quadratic
program (QP), where the state enters the right hand side (rhs) of
the constraints.

In [2] we presented the design of an analog QP circuit. We
showed that its equilibrium voltages are the QP optimizers. The
proposed circuit achieves lower latency and is simpler than the
designs in the early analog optimization work in [3–5].

In this paper we study the dynamics of the circuit. Circuits
that combine linear dynamics and switching elements have been
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extensively studied in the past [6,7]. We describe the circuit as
continuous-time piecewise affine systemwith restricted switching
logic and we derive a criterion for the exponential stability using
a piecewise quadratic Lyapunov function. Stability of a piecewise
affine system can be shown by numerically solving an appropriate
LMI [8–10,6]. In this paper we exploit the structure of the circuit
to show that the Lyapunov function exists for a range of critical
circuit parameters. We make use of an eigenvalue decomposition
and KYP lemma to derive the circuit parameter bound. Our results
allow to quantify the maximum circuit speed as a function of the
circuit parasitic effects.

Although we address a particular system in this paper, the
methodology is of broader interest. This is because the resistor
network in our system exhibits the general structure of diffusive
coupling — an area of extensive research activity in dynamical
systems. In addition, our system has particular features, such
as state dependent switching of the coupling and nonuniform
bias terms affecting the subsystems. Our methodology accounts
for these features and may prompt further research for broader
diffusively coupled systems with similar characteristics.

The paper is organized as follows. For the sake of better
readability, a description of how to construct an analog circuit
from a given QP is presented in Section 2. For more details and
experimental results we refer the reader to the description in [2].
Section 3 presents stability analysis of the circuit and the main
result of the paper. Concluding remarks are presented in Section 4.
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Fig. 1. (a) A node with k connected wires. (b) Equality enforcing circuit consisting
of n resistors Rk , a negative resistance and a reference voltage.

2. QP analog circuit

Consider the quadratic programming (QP) problem

min
V=[V1,...,Vn]T

V TQV (1a)

s.t. AeqV = beq (1b)
AineqV ≤ bineq (1c)

where V1, . . . , Vn are the optimization variables, beq and bineq are
column vectors, Q ≻ 0, and Aineq and Aeq are matrices.

Without loss of generality, we assume that Aineq and Aeq have
non-negative entries. Indeed, a QP (1) with negative entries can be
transformed into this form by introducing an auxiliary vector V̄ as
follows:

min
V̄ ,V

V TQV

s.t. A+

eqV + A−

eqV̄ = beq, A+

ineqV + A−

ineqV̄ ≤ bineq

V + V̄ = 0,

where Aineq and Aeq are split into positive and negative parts
(Aineq = A+

ineq − A−

ineq and Aeq = A+
eq − A−

eq).
In the beginning of this section we present the basic build-

ing blocks which will be later used to create a circuit that solves
problem (1). The first basic block enforces equality constraints of
the form (1b). The second building block enforces inequality con-
straints of the form (1c). The last basic block implements the cost
function.

2.1. Equality constraint

Consider the circuit depicted in Fig. 1(a). In this circuit n wires
are connected to a common node. We call this common node α,
its potential U and the current that exits this node I . Kirchhoff’s
current law (KCL) implies

n
k=1

Ik =

n
k=1

Vk − U
Rk

= I, (2)

where Vk is the potential of node k, Rk is the resistance between
node k and the node α. Eq. (2) can be written as an equality
constraint on potentials Vk:

n
k=1

Vk

Rk
= I + U

n
k=1

1
Rk

. (3)

If we can set the right hand side (rhs) of (3) to any desired value b,
then (3) enforces an equality constraint on a linear combination
of Vk variables. Therefore, every equality constraint (1b) can be
implemented by assigning

U =
b − I
n

k=1

1
Rk

. (4)

Fig. 2. (a) Inequality enforcing circuit. (b) Quadratic cost circuit.

Eq. (4) together with (3) yields


1
R1

. . .
1
Rn

 V1
...
Vn

 = b (5)

and the circuit implementing (5) is shown in Fig. 1(b).

2.2. Inequality constraint

Consider the circuit shown in Fig. 2(a). Similarly to the equality
constraint circuit, n wires are connected to a common node α. Its
potential is U ′ and the current exiting this node is I . Kirchhoff’s
current law (KCL) implies (2).

An ideal diode connects node α to node β . The potential of node
β is U . The diode enforces U ′

≤ U . In Fig. 2(a), the voltage U can be
computed as follows

U =
b − I
n

k=1

1
Rk

≥ U ′. (6)

Eq. (2) and U ′
≤ U yield

n
k=1

Vk

Rk
= I + U ′

n
k=1

1
Rk

≤ I + U
n

k=1

1
Rk

= b, (7)

which can be compactly rewritten as


1
R1

. . .
1
Rn

 V1
...
Vn

 ≤ b. (8)

2.3. Quadratic cost function

Let A =


Aeq
Aineq


be the matrix of constraint coefficients. By

composing the elementary circuits of the previous section we can
design an analog circuit which implements the constraints Aeq V =

beq and Aineq V ≤ bineq. By using simple energy arguments, in [2] it
was shown that such circuitwouldminimize a cost functionV TQAV
where

QA = diag(1TA) − AT diag

1TAT −1

A. (9)

In general, this cost function is different from the desired cost Q .
However, it is possible to add redundant constraints of the form
AaugmV < ∞, which are always inactive and have no effect on
a feasible set of the problem (1). By doing so the cost matrix can
be shaped in a way that QA′ = kQ , where A′

=


A

Aaugm


, k > 0

is a scalar, and QA′ = diag(1TA′) − A′T diag

1TA′T

−1 A′ (see [2]
for additional details). The redundant constraints are implemented
using a simple circuit depicted in Fig. 2(b), i.e, a special case of the
inequality circuit, without the diode and the negative resistor.
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