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a b s t r a c t

Computation of time optimal feedback control law for a controllable linear time invariant system with
bounded inputs is considered. Unlike a recent paper by the authors, the target final state is not limited
to the origin of state-space, but is allowed to be in the set of constrained controllable states. Switching
surfaces are formulated as semi-algebraic sets using Groebner basis based elimination theory. Using these
semi-algebraic sets, a nested switching logic is synthesized to generate the time optimal feedback control.
However, the optimal control law enforces an unavoidable limit cycle in the time-optimal trajectory for
most non-origin target points. The time-period of this limit-cycle is dependent on the target position. This
dependence is algebraically characterized and a method to compute the time-period of the limit-cycle is
provided. As a natural extension, the set of constrained controllable states is also computed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in computer algebra packages have facilitated
application of tools from algebraic geometry (in particular Groeb-
ner basis) to solve important problems in control theory (see
[1–3]). In this work, we apply Groebner basis methods to the prob-
lem of computation of feedback control (from a constrained set
|u| ≤ 1) for the minimum time state-transfer of a linear time in-
variant (LTI) system. Pontryagin’s minimum principle (PMP) pro-
vides the open loop optimal solution, according towhich, the input
switches between extreme admissible values±1 [4]. The feedback
solution, however, requires knowledge of the so called switching
surfaces in the state-space. If the equations for the switching sur-
faces (in terms of the state variables) can be computed, then it is
possible to synthesize the optimal feedback using the sign of the
current state with respect to switching surface. A partial solution
to this synthesis problem was provided in [5] for a class of sys-
tems with positive eigenvalues and later on extended to non-zero
distinct rational eigenvalues in [6]. In these papers, a time opti-
mal feedback control law was synthesized (using Groebner basis)
which transfers admissible initial states to the origin and keeps the
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state-trajectory arbitrarily close to the origin. In this article, we
consider a class of systems with distinct and rational eigenvalues
and extend our earlier results from [5,6] for minimum time state
transfer to non-origin target points.

Optimal feedback is preferred over open loop solutions for ro-
bustness to disturbances as well as reduction in real time compu-
tational load. Time optimal feedback control has been employed,
among others, in space-craft attitude control [7], robotic manip-
ulators [8], pursuit evasion games [9] and multi-agent consen-
sus tracking [10]. Control to non-origin targets is desirable when
linearized equations of the corresponding non-linear system are
valid over a wide range of operating conditions and tracking of dif-
ferent set points (not necessarily the equilibrium point) may be
needed. Such situations occur regularly in a variety of applications
(e.g. see [11] and references therein). The analytical foundations
for the switching surfaces in time optimal control were laid out in
[12,13] and later extended for non-origin target points in [14–16].

In this article,weuse algebraic geometry techniques (i.e., Groeb-
ner basis based implicitization algorithm) for computing the semi-
algebraic representation of switching surfaces (dependent purely
on state-variables). We also construct a nested switching logic us-
ing the computed expressions for these surfaces. Interestingly, un-
like the earlier case (i.e., [5,6]), the state-trajectory is forced into a
limit cycle about the target by the optimal feedback law for most
non-origin target points. The period of this limit cycle is dependent
on the position of the target point in state-space. We characterize
the time period of the limit cycles thus created by the optimal con-
trol strategy. A preliminary version of this article was presented
in [10].
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2. Preliminaries and analysis

We consider a linear time invariant systemwith n-dimensional
state-space:

ẋ(t) = Ax(t) + bu(t); x(0) = x0 (1)

where x : [0, ∞) → Rn is the state vector and the input u(t) is a
measurable function u : [0, ∞) → R which belongs to a set of ad-
missible inputs U = {u ∈ L∞

[0, ∞) : |u(t)| ≤ 1 a.e. t ∈ [0, ∞)}.
We assume that the eigenvalues of matrix A are distinct and ratio-
nal and the pair (A, b) is controllable. Let us denote by Xp the set
of initial conditions from which system (1) can be transferred to
p ∈ Rn in some time t > 0. We assume access to state-variables
and compute the time optimal feedback law h : Xp → [−1, 1]
to transfer any initial condition x0 ∈ Xp to the target point p. The
eigenvalues of A are assumed to be distinct and rational. The reach-
able set at time t > 0 (denoted by Rp(t)) to point p is the set of all
the points x ∈ Rn that can be driven to p in time t using the admis-
sible control u(t) ∈ U [16].

Rp(t) =


e−Atp −

 t

0
e−Aτbu(τ )dτ : u(t) ∈ U


. (2)

The set of all the states that can be driven to p using u(t) ∈ U is
called the reachable set to the point p and is Xp =


t∈[0,∞) Rp(t).

When p is the origin, we get the set of initial conditions R0(t) that
can be driven to the origin with input u(t) ∈ U in time t : R0(t) = t

0 e−Aτbu(τ )dτ : u(t) ∈ U

. Then, the set of null-controllable

states [12] is given by X0 =


t∈[0,∞) R0(t). From point p the attain-
able set at time t is the set of all the states that can be reached from
the point p using admissible control u(t) ∈ U in time t > 0 [16].

Ap(t) =


eAtp +

 t

0
eA(t−τ)bu(τ )dτ : u(t) ∈ U


. (3)

Taking the union of set (3) for all time t > 0 we get the attainable
set from the point p which is Ap =


t∈[0,∞) Ap(t) [16].

A point p ∈ Rn is said to be a constrained controllable for system
(1), if it is in the interior of Xp i.e. p ∈ int (Xp). In other words
all points in the neighborhood of a constrained controllable point
p must be transferable to p. We restrict ourselves by considering
the target stateswhich are constrained controllable points because
of following reason. If a point p is not a constrained controllable
point, then for some initial conditions in the neighborhood of p it
is impossible to transfer the state-trajectory to target point p. Thus,
such a target point is not useful for practical purposes. Hence-forth
we assume p to be a constrained controllable point.

Next we review the notion of switching surfaces, which will be
used subsequently to construct the time optimal feedback law. It
is well known that the optimal control for minimum time state-
transfer is bang–bang with at most n − 1 switches [4]. Let M+

p,k
be the set of initial conditions which can be steered to the target p
using bang–bang inputwith atmost k−1 switches and initial input
u = 1. To characterize the set M+

p,k, we first define the set Vk :=

{(t1, t2, . . . , tk) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk < ∞} for k = 1, . . . , n.
Next, we use (2) to define functions F+

p,k and F−

p,k as follows.

F±

p,k : Vk → Rn

F±

p,k : (t1, . . . , tk) → e−Atkp±
−

 t1

0
+ · · · + (−1)k

 tk

tk−1


e−Aτbdτ . (4)

Then, M+

p,k = {x : x = F+

p,k(v), ∀v ∈ Vk} and similarly, M−

p,k is
the set of such conditions with initial input u = −1 defined by

M−

p,k = {x : x = F−

p,k(v), ∀v ∈ Vk}. Thus the set of all states that
can be driven to p in at most k − 1 switches is defined as

Mp,k = M+

p,k ∪ M−

p,k. (5)
The sets Mp,k for k = 1, . . . , n obey the inclusion relation

Mp,0 ⊂ Mp,1 ⊂ · · · ⊂ Mp,n. From the existence and uniqueness of
time optimal control to transfer any point in Xp to the target point
p (see [4]), we get Mp,n = Xp. In other words, the reachable set to
point p using only bang–bang input (with at most n − 1 switches)
is in fact the entire reachable set to p (i.e. Xp) and hence by (5),
Xp = M+

p,n ∪ M−
p,n.

3. Using Mp,k for feedback

The nested sequence of sets Mp,k (k = 1, . . . , n − 1) can be
used to synthesize time optimal feedback control. Assume p = 0,
temporarily, to simplify the following explanation. To drive the
system from any state in X0 to p = 0 in minimum time, the control
value must ideally switch as follows. Consider x0 ∈ M+

0,n. Then
initially, input u = +1 should be applied, which pushes x from
M+

0,n to themanifoldM−

0,n−1. As soon as x ∈ M−

0,n−1, the input should
switch to u = −1, which then pushes x toM+

0,n−2 and so on. Finally
input at (n−1)th switch pushes x fromM+

0,1 (if n is odd) orM−

0,1 (if n
is even) to the target p = 0. Similar sequence is valid for x0 ∈ M−

p,n
with opposite signs of input [6]. This switching algorithm works
ideally for p = 0, because the setsM+

0,n \ M+

0,n−1 andM−

0,n \ M−

0,n−1
are disjoint and M+

0,n ∩ M−

0,n = M0,n−1 is a set of measure zero in
Mn (see [12]). Hence the initial input is determined uniquely from
whether x0 ∈ M+

0,n or x0 ∈ M−

0,n.
However, for most non-origin target points (i.e., p ≠ 0), the

set M+
p,n ∩ M−

p,n is of non-zero measure in Mp,n. This implies that
points in the set M+

p,n ∩ M−
p,n can be driven to p by more than one,

distinct bang–bang inputswith atmost n−1 discontinuities. How-
ever, uniqueness of time-optimal control guarantees that only one
of them is time-optimal. All points in the set Xp other than those
which lie in the set M+

p,n ∩ M−
p,n, belong to exactly one of the sets

M+
p,n or M−

p,n. All the initial conditions x0 ∈ Xp \ (M+
p,n ∩ M−

p,n) can
be driven to p in minimum time by using the time optimal switch-
ing (exactly as in p = 0 case). The situation is demonstrated by an
example next.

Example 1. For a second order LTI system (1) with A = diag(1, 2),
b = [1 1]T and |u| ≤ 1, the corresponding structure of Xp with
p =


0.33 0

T is shown in Fig. 1. This figure illustrates thatM+

p,2∩

M−

p,2 is non-empty. For an initial condition x0 ∈ M−

p,2 \(M+

p,2∩M−

p,2)

shown in the figure, input u = −1 steers the state-trajectory x(t)
towardsM+

p,1. As soon as x(t) ∈ M+

p,1, the input u = +1 directs the
state-trajectory towards p.

For initial conditions x0 ∈ M+
p,n ∩ M−

p,n, we have two choices of
initial control namelyu = +1 andu = −1. Only one of themdrives
the system to p in minimum time. This initial choice can be com-
puted beforehand by using PMP. However after the initial input has
been applied, all the future control inputs are computed as per the
algorithm proposed. If choice of initial input goes wrong, although
time-optimality will be lost, the target point will be achieved in
finite time.

Before giving an algorithm to compute Mp,k, we note that, for
any real similarity transformationx = Tx on a system, the corre-
sponding set M±

p,k = {x = Tx : x ∈ M±

p,k} [12]. As system matrix A
has distinct rational eigenvalues, we assume A to be diagonal with-
out loss of generality.

4. Parametric representation

All x ∈ Mp,k are characterized by the functions F+

p,k or F
−

p,k (given
by (4)) defined over Vk. Note that A is assumed to be diagonal.
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