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a b s t r a c t

A family of continuous-time observable nonlinear systems with input and output is considered. A new
technique of estimation of the state variables is proposed. It relies on the use of past values of the output, as
done to construct someobserverswhich converge in finite time, andon a recent technical result pertaining
to the theory of the monotone systems. It applies to systems with additive disturbances and disturbances
in the output. The nonlinear terms are not supposed to be globally Lipschitz, but it is requested that they
depend only on the input and output variables.
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1. Introduction

The problem of estimating the value of the solutions of a sys-
tem when some variables are not accessible by measurements is
a fundamental problem, which has been addressed by many tech-
niques in many contributions. Traditional state estimators, such as
for instance the Luenberger observer [1], are very popular. They
compute point estimates of the state from input–output data, pos-
sibly supplemented by an estimate of the dispersion of the possi-
ble values of the state around this point estimate. Guaranteed state
estimators [2,3], also known as set-membership estimators [4,5],
compute sets guaranteed to contain the actual value of the state
if some hypotheses on the state perturbation and measurement
noise are satisfied. Guaranteed state estimation can be traced back
to the seminal work of F.C. Schweppe [6]. His idea was recursively
to compute ellipsoids guaranteed to contain the actual state (of
course, other types of containers than ellipsoids could and have
been used). In the last two decades, a new technique of guaran-
teed state estimations has been proposed. It is based on tools called
interval observers and is developed and applied in many studies,
see, for instance, [7–11] and the references therein. Typically, inter-
val observers bound the actual state between two functions which
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take advantage of the solutions of two deterministic and possibly
coupled dynamical systems. A key feature of the interval observers
is that they can be applied only when an approximate knowledge
of the initial conditions (in terms of an upper and a lower bound)
is known. By contrast with all the mentioned results, some ob-
servers make it possible to determine the value of the solutions of
continuous-time systems in finite time. This is the case in particu-
lar of the observers designed in [12–14] [15,16] which converge to
the solutions in finite time. Some papers present finite-time con-
vergent observers for nonlinear systems that are linearizable up to
output injection. This is the case of [15,16]. All the above works
consider systems without additive disturbances in the measure-
ments. Recently finite time observers were designed for a class of
nonlinear systemswith unknown inputs [17]. The latter results are
confined to the case where the number of unknown inputs is not
greater than the number of outputs.

The aim of the present work is to propose a new approach of
guaranteed state estimations for estimating state variables of non-
linear systems in the case where no approximate knowledge of the
initial conditions is known and the systems have no monotonic-
ity property. It is based on formulas incorporating past values of
the input and the output of the studied system, which are remi-
niscent of the formulas proposed in [12,17,15] and uses a recent
technical result stated and proved in [18], which makes it possible
to express a function without monotonicity property as another
function (with domain of definition of dimension larger than the
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domain of the considered function) which is increasing with re-
spect to some of its variables and decreasing with respect to oth-
ers. We consider the systems for which two types of bounded
deterministic time-varying disturbances are present: in the dy-
namics and in the output. Usually, these disturbances are present
in applications; notice in particular that in general the measures
are inaccurate. The results we obtain are of two types: some of the
formulas of estimation we propose are functions of the past values
of the input and the output only and have terms with distributed
delays and others take advantage of dynamic extensions and have
terms with pointwise constant delays only. In the absence of un-
known uncertainties, the formulas we exhibit provide with the
exact values of the solutions, after a finite time interval. When un-
known disturbances are present and upper and lower bounded by
known constant vectors, then, the formulas we propose give, after
a finite time interval, upper and lower bounds for each component
of the solutions, as interval observers do. The difference between
these bounds is bounded as long as the disturbances are bounded.
Finally, it is worthmentioning that we consider systems with non-
linear terms which are not supposed to be globally Lipschitz, but it
is required that they depend only on the inputs and outputs.

The paper is organized as follows. The family of systems studied
is presented in Section 2. The main results are stated and proved
in Sections 3 and 4. They are illustrated through examples in
Section 5. Concluding remarks are given in Section 6.
Notation, definitions and prerequisites

The notationwill be simplifiedwhenever no confusion can arise
from the context. Any k×nmatrix, whose entries are all 0 is simply
denoted 0. The Euclidean normof vectors of any dimension and the
induced norm ofmatrices of any dimension are denoted | · |. All the
inequalities must be understood componentwise (partial order of
Rr ) i.e. va = (va1, . . . , var)

⊤
∈ Rr and vb = (vb1, . . . , vbr)

⊤
∈

Rr are such that va ≤ vb if and only if, for all i ∈ {1, . . . , r},
vai ≤ vbi. A symmetricmatrixM ∈ Rn×n is positive (resp. negative)
semidefinite if for all vectors v ∈ Rn, v⊤Mv ≥ 0 (resp. v⊤Mv ≤ 0).
Then we denote M ≽ 0 (resp. M ≼ 0). A matrix M ∈ Rn×n

is said to be Schur stable if its spectral radius is smaller than 1.
For two matrices M = (mij) ∈ Rr×s and N = (nij) ∈ Rr×s

of same dimension, max{M,N} is the matrix where each entry is
max{mij, nij}. For a matrix M ∈ Rr×s, M+

= max{M, 0}, M−
=

max{−M, 0}. A matrix M ∈ Rr×s is said to be nonnegative if
M+

= M . A sequence (ui) is nonnegative if for all integer k, uk is
nonnegative. If a matrix M is Metzler, then for all t ≥ 0, eMt

≥ 0.
For any continuous function ϕ : [−τ ,∞) → Rn and all t ≥ 0, we
define ϕt by ϕt(m) = ϕ(t + m) for all m ∈ [−τ , 0], i.e., ϕt ∈ Cin is
the translation operator.

2. Family of studied systems

Throughout the paper, we consider the nonlinear system
ẋ(t) = F(x(t), u(t), ϵ2(t))
y(t) = Cx(t)+ ϵ1(t),

(1)

where x(t) ∈ Rn is the state, and C ∈ Rq×n, y(t) ∈ Rq is the output,
u(t) ∈ Rp is a possible known input, F is a nonlinear function of
class C1, and ϵ1 : [0,+∞) → Rq and ϵ2 : [0,+∞) → Rm are
disturbances, which are supposed to be piecewise continuous and
bounded.

We introduce the following assumption:

Assumption A. The function F is such that there exist a matrix
A ∈ Rn×n and a function f of class C1 such that, for all x ∈ Rn, u ∈

Rp, ε ∈ Rm

F(x, u, ε) = Ax + f (Cx, u, ε) (2)

and the pair (A, C) is observable.

We will also use the following assumption:

Assumption B. There are known constant vectors ϵ1 ∈ Rq, ϵ1 ∈

Rq and ϵ2 ∈ Rn, ϵ2 ∈ Rn such that, for i = 1, 2, and for all t ≥ 0,
the inequalities

ϵ i ≤ ϵi(t) ≤ ϵ i (3)

are satisfied.

Discussion of the assumptions
•Notice that, along the trajectories of (1), f (Cx(t), u(t), ϵ2(t)) =

f (y(t)− ϵ1(t), u(t), ϵ2(t)). Thus Assumption A implies that in the
system (1), f can be seen as a function which depends only on y, u,
ϵ1 and ϵ2. Therefore, the family of systems (1) satisfying Assump-
tion A belongs to the family of the systems affine in the unmea-
sured part of the state. For these systems, many constructions of
asymptotic observers (see for instance [19]) and interval observers
(see for instance [7,20]) have been proposed.

• All the results of our paper can be extended straightforwardly
to the case where the function f depends on t explicitly. For the
sake of simplicity, we restrict ourselves to time-invariant systems.

• The decomposition (2) of the function F is not unique. In par-
ticular, let us notice for later use that when Assumption A is sat-
isfied, a matrix A with real negative eigenvalues can always be
selected.

• We prove in Appendix B that, under Assumption A, for any
selected matrix A, there is a matrix L ∈ Rn×q such that the matrix

H = A + LC ∈ Rn×n (4)

is Hurwitz and there is a constant τ > 0 such that the matrix

e−τH
− e−τA

∈ Rn×n (5)

is invertible. See also [12], where it is proved that L can be chosen
such that e−τH

− e−τA is invertible for arbitrarily small constants
τ > 0.

• We will use the following notation:

Eτ =

e−τH

− e−τA−1
. (6)

• Assumption B is realistic and is frequently satisfied in practice.
Moreover, it can be relaxed by allowing the bounds ϵ i, ϵ i to depend
on t . However, for the sake of simplicity, we restrict ourselves to
the case where they are constant.

3. Exact estimation

The results of this section provide with exact estimations of the
solutions in finite time, but they can be applied only when the
functions ϵ1 and ϵ2 are known. Moreover, it is important to keep
in mind that since Assumption A does not imply that the function
f is globally Lipschitz, the finite escape time-phenomenon may
occur even if u(t) is a bounded function. The results of the present
section owe a great deal to the contributions [12,15]. However,
they are very different from those of [12], which are devoted to
linear systems without functions ϵ1 and ϵ2. The results in [15] are
also concerned with systems without functions ϵ1 and ϵ2, but they
apply to systems (1) when they satisfy Assumption A.

3.1. Exact estimation, direct approach

Let us state and prove the following result:
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