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a b s t r a c t

The distributed calculation of node eccentricities, graph radius and graph diameter are fundamental
steps to tune network protocols (e.g., setting an adequate time-to-live of packets), to select cluster
heads, or to execute distributed algorithms, which typically depend on these parameters. Most existing
methods deal with undirected topologies and have high memory and/or bandwidth requirements (or
simply provide a bound on the diameter to reduce such costs). Other approaches, instead, require nodes
able to communicate with their neighbors on a point-to-point basis, thus requiring each node to be
aware of its neighbors. In this paper, we consider strongly connected directed graphs or connected
undirected graphs, and we develop an algorithm that takes advantage of the robustness and versatility
of the max-consensus algorithm, and has low computational, memory and bandwidth requirements.
Moreover, the agents communicate by broadcastingmessages to their (out-) neighbors without requiring
any knowledge on them or needing point-to-point communication capability. Specifically, each node has
memory occupation proportional to the number of its neighbors, while the bandwidth for each link at
each time instant is O(log n) bits, where n is the number of nodes. The completion time of the proposed
algorithm is O(δn) for undirected graphs and O(n2) for directed graphs, where δ is the network diameter.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the literature much effort has been spent in the parallel
(see [1] for a recent survey) and distributed calculation of the
network diameter (i.e., the length of the maximum shortest path
among any two nodes in the network), of the eccentricity of a
given node (i.e., themaximum shortest path from a particular node
to any other node) and the network radius (i.e., the minimum
among the eccentricities of the nodes). Having such insights can
help reduce computational effort in consensus algorithms [2–4], or
can be used to set time-to-live parameters in routing protocols [5].
Moreover, the eccentricities of the nodes can be used to select
cluster heads or local coordinators [6]. In the following, we denote
the total number of nodes/agents in the network by n, and the
network diameter by δ; we also denote by |N in

i | the size of the in-
neighborhoodN in

i of an agent i, i.e., the number of agents that may
send information to the ith agent.
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The approaches available to date apply to the connected undi-
rected graph case and, although some methods like the one in [7]
have short completion time, they may have high memory and/or
bandwidth requirements,which becomeoverwhelming, especially
for big networks. A typical approach to calculate eccentricities [6,8]
is to construct theminimum spanning tree [9] rooted at each node,
or to calculate the shortest paths in the graph [10,11]. For undi-
rected graphs, a distributed way to calculate the shortest paths is
given in [12] and it requires O(n2) steps to complete.

The approach for undirected graphs presented in [13], is able
to calculate the diameter in O(n) steps, O(log n) bandwidth per
link per step and O(|N in

i | log n) bits of memory at each node (if a
time-to-live is attached to the messages, otherwise O(n log n) bits
are required to check for retransmissions). The algorithm in [13]
requires nodes outfitted with nontrivial communication and com-
putational capabilities, as it combines several communication ap-
proaches, ranging from flooding and breadth-first visit (broadcast)
to depth-first visit and ConvergeCast (point-to-point). Specifically,
the algorithm calculates the maximum among the eccentricities of
the nodes by constructing n trees via a breadth-first visit; the vis-
its are suitably staggered to avoid collisions and terminate in O(n)
steps. This feature, however, relies on a precise scheduling of the
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Table 1
Comparison of the main features of the proposed algorithm against the state of the art.

Feature Ref. [13] Ref. [14] Ref. [7] Ref. [15] Ref. [4] Proposed approach

Approximation Exact δ ≤ δ ≤ 2δ Exact δ ≤ δ ≤ ( 3
2 + η)δ δ ≤ δ ≤ 2δ Exact

Undirected Yes Yes Yes Yes Yes Yes
Directed No No No No No Yes

Steps O(n) O(n) O(δ) O(


n log n
δη

+ δ) O(δn) O(n2) for directed graphs,
O(δn) for undirected
graphs

Memory O(|N in
i | log n) if using a

time-to-live approach for
Flooding, O(n log n) if
checking for
re-transmission

O(M|N in
i | log n) O(n log n) O(|N in

i | log n) O(|N in
i | log n) O(|N in

i | log n)

Bandwidth O(log n) O(M log n) O(n log n) O(log n) O(log n) O(log n)

Remarks The nodes must be able to
switch between
broadcasting and
point-to-point
communication. The
algorithm requires a
precise scheduling of the
messages exchanged.

M ≥ 1 is used to trade off
memory/bandwidth for
accuracy

η ∈ (0, 1
3 ] is used to trade

off completion time for
accuracy

visits, and a failure (e.g., packet loss) may cause errors or inconsis-
tencies.

In [14] a procedure based onmax-consensus [2] is used in order
to obtain an approximation δ of the diameter δ in O(n) steps; the
accuracy, however, depends on a factor M which also influences
memory requirements (O(M|N in

i | log n) bits for each agent) and
bandwidth (O(M log n) bits per link per time step). In [7] an
algorithm for the exact calculation of the eccentricity of each node
and of the network diameter is provided. Specifically, the nodes
exchange messages containing information on an estimate of the
diameter, on the hop counts and on the identifier of the sender,
following a flooding approach. The algorithm requires a bandwidth
of O(n log n) bits per link per step and terminates in O(δ) steps.
As for the memory resources, at each step, the agents need to
store the identifiers associated to the messages received in the
previous 2 steps, hence it requires storage of O(n) identifiers (i.e.,
O(n log n) bits of memory occupancy). In [15] the authors develop
an algorithm that provides an approximation δ of the diameter δ
such that δ ≤ ( 3

2 + η)δ, where η ∈ (0, 1
3 ] is a parameter that

constitutes a trade off between accuracy and completion time. Each
node can transmit a different message of O(log n) bits to each of its
neighbors in a synchronous way, and the graph is assumed to be
undirected. The number of rounds for the algorithm to terminate
is O(


n log n

δη
+ δ).

In [4] we develop an algorithm that provides an upper bound
of the diameter in O(δn) steps; this upper bound is guaranteed to
be atmost twice the actual diameter. Thememory requirement for
this algorithm is O(|N in

i | log n) bits per node and the bandwidth is
O(log n) bits per link per step.

In this paper, we provide a distributed algorithm which
provides the exact value of the eccentricities, graph radius and
graph diameter, both in the undirected and directed graph cases.
The proposed algorithm maintains low bandwidth (i.e., O(log n)
bits per link per step) and memory (i.e., O(|N in

i | log n) bits per
node). Moreover, in the proposed approach each node only
has to broadcast its messages, without any knowledge of its
neighbors and without requiring point-to-point communication
capability. In a nutshell, the algorithm calculates the eccentricities
of the nodes in a sequential way, resorting to max-consensus
algorithms [2]. Notice that the usage of max-consensus provides
increased robustness to transmission failures such as packet loss
(althoughmainly related to the average consensus case, somehints

on this issue can be found in [16–18]), compared to more fragile
approaches like the one in [13].

As for the completion time, the proposed algorithm terminates
in O(δn) steps in the connected and undirected graph case and
O(n2) steps in the strongly connected and directed graph case.

Table 1 summarizes the comparison between the proposed
approach and the state of the art.

The proposed algorithm relies on successive runs of the max-
consensus algorithm, and on a novel algorithm to calculate the
depth of each node over the minimum spanning tree rooted at a
given node, which has a structure similar to max-consensus. This
approach has several advantages in terms of memory, bandwidth
and robustness when compared against previous approaches.
The advantages are explained in detail later on, once we have
the chance to more precisely describe the characteristics of the
algorithm.

The outline of the paper is as follows: Section 2 collects some
background material; Sections 3 and 4 develop our algorithms
to calculate the eccentricity and the diameter (and radius),
respectively; Section 5 contains simulations that illustrate the
potential of the proposed approach. Finally, some conclusive
remarks and future work directions are collected in Section 6.

2. Preliminaries

Let G = {V , E} be a graph with n nodes V = {v1, v2, . . . , vn}

and e edges E ⊆ V × V , where (vi, vj) ∈ E captures the existence
of a link from node vi to node vj. A graph is said to be undirected
if (vi, vj) ∈ E whenever (vj, vi) ∈ E, and is said to be directed
otherwise.

A path over a graph G = {V , E}, starting from a node vi ∈ V
and ending in a node vj ∈ V , is a subset of links in E that connect
vi and vj without creating loops. The length of the path is the
cardinality of such set. A graph is connected if for each pair of nodes
vi, vj there is a path over G that connects themwithout necessarily
respecting the edge orientation, while it is strongly connected if the
path respects the orientation of the edges. It follows that every
undirected connected graph is also strongly connected.

A minimum path that connects vi and vj is the path from vi to
vj of minimum length. A minimum spanning tree rooted at a node
vi ∈ V is a tree (i.e., an acyclic connected subgraph of G with
n − 1 links, where n is the number of nodes) that connects vi to
each other node via edges belonging to the minimum paths in G
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