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1. Introduction

We consider a discounted MDP with state space 4, action space
A, both assumed to be finite. A randomized policy 7 specifies how
actions are chosen, i.e., 7 (s), for any s € 4 is a distribution over
the actions +. The objective is to find the optimal policy 7* that is
defined as follows:

T*(s) = argg;ax v'(s) :=E Zﬂ Z r(Sy, Q)

n aceA(sp)
X 70 (Sp, D)]so =S| (1)

where 1 (s, a) is the instantaneous reward obtained in state s upon
choosing action a, 8 € (0, 1) is the discount factor and I7 is the
set of all admissible policies. We shall use v*(=v”*) to denote the
optimal value function.
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Actor-critic algorithms (cf. [1-3]) are popular stochastic ap-
proximation variants of the well-known policy iteration procedure
for solving (1). The critic recursion provides estimates of the value
function using the well-known temporal-difference (TD) algo-
rithm, while the actor recursion performs a gradient search over
the policy space. We propose an actor-critic algorithm with a novel
descent direction for the actor recursion. The novelty of our ap-
proach is that we can motivate the actor-recursion in the follow-
ing manner: the descent direction for the actor update is such that
it (globally) minimizes the objective of a non-linear optimization
problem, whose minima coincide with the optimal policy 7 *. This
descent direction is similar to that used in Algorithm 2 in [1], ex-
cept that we use a different exponent for the policy and a simi-
lar interpretation can be used to explain Algorithm 2 (and also 5)
of [1]. Using multi-timescale stochastic approximation, we provide
global convergence guarantees for our algorithm.

While the proposed algorithm is for the case of full state repre-
sentations, we also briefly discuss a function approximation vari-
ant of the same. Further, we conduct numerical experiments on a
shortest-path network problem. From the results, we observe that
our actor—-critic algorithm performs on par with the well-known
Q-learning algorithm on a smaller-sized network, while on a
larger-sized network, the function approximation variant of our al-
gorithm does better than the algorithm in [4].
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2. The non-linear optimization problem

With an objective of finding the optimal value and policy tuple,
we formulate the following problem:

min min <j(v, T) = Z Zn(s, a)[v(s) — Q. a)])

veRlS well s€8 acA
st. Vsed,ae A . (@)
(@)7(s.a) =0, (b)) m(s.a)=1, and

acA

(0)g(s,a) <0.

In the above, g(s,a) = Q(s,a) — v(s), with Q(s,a) := r(s,a) +
B o p(s'ls, a)v(s’). Here p(s'ls, a) denotes the probability of a
transition from state s to s’ upon choosing action a.

The objective in (2) is to ensure that there is no Bellman error,
i.e., the value estimates v are correct for the policy . The con-
straints (2)(a)-(2)(b) ensure that 7 is a distribution, while the con-
straint (2)(c)is a proxy for the maxin (1). Notice that the non-linear
problem (2) has a quadratic objective and linear constraints.

From the definition of 77 *, it is easy to infer the following claim:

Theorem 1. Let g*(s,a) := Q*(s,a) — v*(s), with Q*(s,a) =
r(s,a)+ B ¢ p(s'ls, )v*(s'), Vs € 8, a € A. Then,

(i) Any feasible (v*, w*) is optimal in the sense of (1) if and only if
J*, 7*) = 0.

(ii) w* is an optimal policy if and only if 7*(s,a)g*(s,a) = 0,
Vae A,s € 4.

3. Descent direction

Proposition 1. For the objective in (2), the direction /7 (s, a)g (s, a)
is a non-ascent and in particular, a descent direction along 7 (s, a) if

Jr(s,a)g(s,a) # 0, foralls € §,a € A.

Proof. Consider any action a € # for some s € §. We show that
/7 (s, a)g(s, a)is adescent direction by the following Taylor series
argument. Let

(s, a) =m(s,a) + 8/ (s,a)g(s, a),

for a small § > 0. We define 7 to be the same as 7 except with
the probability of picking action a in state s € § being changed to
7 (s, a) (and the rest staying the same). Then by Taylor’s expansion
of J(;r) up to the first order term, we have that

aJ (v, )

am(s,a)

Note that higher order terms are all zero since J (v, 7r) is linear in
7. It should be easy to see from definition of the objective that
Y1) — _g(s, ). So,

am(s,a) ~—

J, 7) =], ) — 8/7 (s, a)(g(s, a))*.

Thus, fora € A ands € $ where w(s,a) > 0and g(s,a) # 0,

J(v, ) < J(v, ), while when /7 (s, a)g(s,a) = 0,J(v,7T) =
J, ). O

J, ) =], m) + 8y/7 (s, a)g(s, a)

The next section utilizes the descent direction to derive an
actor-critic algorithm.

4. The actor-critic algorithm

Combining the descent procedure in = from the previous sec-
tion, with a TD(0) [5] type update for the value function v on a

faster time-scale, we have the following update scheme:
Q-Value : Q,(s, a) = r(s, a) + Bv,(s),
TD Error : g,(s, a) = Q,(s, a) — vy(s),
Critic : vy, 1(s) = va(s) + c(N)gu(s, a),

Actor : 7,.1(s,a) = F(nn(s, a) + b(n)/ 7, (s, a)gn (s, a)).

In the above, I' is a projection operator that ensures that the up-
dates to & stay within the simplex D = {(X1,....%) | x; >
o,vi=1,...,q, Z;’lej < 1}, where g = ||. Further, the step-
sizes b(n) and c(n) satisfy

Zc(n) = Zb(n) = 00, Z (c*(n) +b*(n)) < oo and
n=1 n=1 n=1

b(n) = o(c(n)).

Remark 1 (Connection to Algorithm 2 of [1]). From Proposition 1,
we have that /7 (s, a)g (s, a) is a descent direction for 7 (s, a). This
implies 7w (s, a)* x /7 (s, a)g(s, a) forany @ > 0, is also a descent
direction. Hence,

a generic update rule for 7 is : w,41(S, a)
/ 1
=TI (nn(s, a) + b(n) (n(s, @))% ga(s, a)) , foranyo’ > 7

The special case of ' = 1 coincides with the 7 -recursion in Algo-
rithm 2 of [1].

5. Convergence analysis

For the purpose of analysis, we assume that the underlying
Markov chain for any policy = € IT is irreducible.

Main result. Let v™ = [[ — BP;]"' R,, where R, =< r(s, ), s €
8 >T is the column vector of rewards and P, = [p(y|s, w),s €
4,y € 4] is the transition probability matrix, both for a given .
Consider the ODE:

d”((;’ 9 _f (VrG 0g .0). Vaeases where (4)
g7 (s,a) =r(s, ) + B Y plyls, v () — v"(s). (5)
yeu(s)

In the above, I" is a projection operator defined by I'(e()) =
limg o FEFECI=E for any continuous €(-).

Theorem 2. Let K denote the set of all equilibria of the ODE (4), G the

set of all feasible points of the problem (2) and K := K N G. Then, the
iterates (vy, ,), n > 0 governed by (3) satisfy

(vn, ) — K* as.asn — oo, where K* = {(v*, %) | n* € K}.

The algorithm (3) comprises of updates to v on the faster time-
scale and to  on the slower time-scale. Using the theory of two
time-scale stochastic approximation [6, Chapter 6], we sketch the
convergence of these recursions as well as prove global optimality
in the following steps (the reader is referred to the appendix (see
Appendix A) for proof details):

Step 1: Critic convergence. We assume 7 to be time-invariant
owing to time-scale separation. Consider the ODE:

dl;(:) =r(s, 1) + B gp(sws, DVY) —vE), Vsed (6)
where r(s, 7) = ) .. 7(s, @)r(s,a) and p(s'ls,m) = D .7

(s, a)p(s'|s, a). It is well-known (cf. [7]) that the above ODE has
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