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a b s t r a c t

We propose a novel actor–critic algorithm with guaranteed convergence to an optimal policy for a
discounted reward Markov decision process. The actor incorporates a descent direction that is motivated
by the solution of a certain non-linear optimization problem.We also discuss an extension to incorporate
function approximation and demonstrate the practicality of our algorithms on a network routing
application.
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1. Introduction

We consider a discounted MDP with state space S, action space
A, both assumed to be finite. A randomized policy π specifies how
actions are chosen, i.e., π(s), for any s ∈ S is a distribution over
the actions A. The objective is to find the optimal policy π∗ that is
defined as follows:

π∗(s) = argmax
π∈Π


vπ (s) := E


n

βn


a∈A(sn)

r(sn, a)

× π(sn, a)|s0 = s


, (1)

where r(s, a) is the instantaneous reward obtained in state s upon
choosing action a, β ∈ (0, 1) is the discount factor and Π is the
set of all admissible policies. We shall use v∗(=vπ

∗

) to denote the
optimal value function.
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Actor–critic algorithms (cf. [1–3]) are popular stochastic ap-
proximation variants of thewell-known policy iteration procedure
for solving (1). The critic recursion provides estimates of the value
function using the well-known temporal-difference (TD) algo-
rithm, while the actor recursion performs a gradient search over
the policy space.Wepropose an actor–critic algorithmwith a novel
descent direction for the actor recursion. The novelty of our ap-
proach is that we can motivate the actor-recursion in the follow-
ing manner: the descent direction for the actor update is such that
it (globally) minimizes the objective of a non-linear optimization
problem, whose minima coincide with the optimal policy π∗. This
descent direction is similar to that used in Algorithm 2 in [1], ex-
cept that we use a different exponent for the policy and a simi-
lar interpretation can be used to explain Algorithm 2 (and also 5)
of [1]. Usingmulti-timescale stochastic approximation, we provide
global convergence guarantees for our algorithm.

While the proposed algorithm is for the case of full state repre-
sentations, we also briefly discuss a function approximation vari-
ant of the same. Further, we conduct numerical experiments on a
shortest-path network problem. From the results, we observe that
our actor–critic algorithm performs on par with the well-known
Q-learning algorithm on a smaller-sized network, while on a
larger-sized network, the function approximation variant of our al-
gorithm does better than the algorithm in [4].
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2. The non-linear optimization problem

With an objective of finding the optimal value and policy tuple,
we formulate the following problem:

min
v∈R|S|

min
π∈Π


J(v, π) :=


s∈S


a∈A

π(s, a)

v(s)− Q (s, a)


s.t. ∀s ∈ S, a ∈ A

(a) π(s, a) ≥ 0, (b)

a∈A

π(s, a) = 1, and

(c) g(s, a) ≤ 0.


. (2)

In the above, g(s, a) := Q (s, a) − v(s), with Q (s, a) := r(s, a) +

β


s′ p(s
′
|s, a)v(s′). Here p(s′|s, a) denotes the probability of a

transition from state s to s′ upon choosing action a.
The objective in (2) is to ensure that there is no Bellman error,

i.e., the value estimates v are correct for the policy π . The con-
straints (2)(a)–(2)(b) ensure that π is a distribution, while the con-
straint (2)(c) is a proxy for themax in (1). Notice that the non-linear
problem (2) has a quadratic objective and linear constraints.

From the definition of π∗, it is easy to infer the following claim:

Theorem 1. Let g∗(s, a) := Q ∗(s, a) − v∗(s), with Q ∗(s, a) :=

r(s, a)+ β


s′ p(s
′
|s, a)v∗(s′), ∀s ∈ S, a ∈ A. Then,

(i) Any feasible (v∗, π∗) is optimal in the sense of (1) if and only if
J(v∗, π∗) = 0.

(ii) π∗ is an optimal policy if and only if π∗(s, a)g∗(s, a) = 0,
∀a ∈ A, s ∈ S.

3. Descent direction

Proposition 1. For the objective in (2), the direction
√
π(s, a)g(s, a)

is a non-ascent and in particular, a descent direction along π(s, a) if√
π(s, a)g(s, a) ≠ 0, for all s ∈ S, a ∈ A.

Proof. Consider any action a ∈ A for some s ∈ S. We show that√
π(s, a)g(s, a) is a descent direction by the following Taylor series

argument. Let

π̂(s, a) = π(s, a)+ δ

π(s, a)g(s, a),

for a small δ > 0. We define π̂ to be the same as π except with
the probability of picking action a in state s ∈ S being changed to
π̂(s, a) (and the rest staying the same). Then by Taylor’s expansion
of J(π) up to the first order term, we have that

J(v, π̂) = J(v, π)+ δ

π(s, a)g(s, a)

∂ J(v, π)
∂π(s, a)

.

Note that higher order terms are all zero since J(v, π) is linear in
π . It should be easy to see from definition of the objective that
∂ J(v,π)
∂π(s,a) = −g(s, a). So,

J(v, π̂) = J(v, π)− δ

π(s, a)(g(s, a))2.

Thus, for a ∈ A and s ∈ S where π(s, a) > 0 and g(s, a) ≠ 0,
J(v, π̂) < J(v, π), while when

√
π(s, a)g(s, a) = 0, J(v, π̂) =

J(v, π). �

The next section utilizes the descent direction to derive an
actor–critic algorithm.

4. The actor–critic algorithm

Combining the descent procedure in π from the previous sec-
tion, with a TD(0) [5] type update for the value function v on a

faster time-scale, we have the following update scheme:

Q-Value : Qn(s, a) = r(s, a)+ βvn(s′),
TD Error : gn(s, a) = Qn(s, a)− vn(s),

Critic : vn+1(s) = vn(s)+ c(n)gn(s, a),

Actor : πn+1(s, a) = Γ


πn(s, a)+ b(n)


πn(s, a)gn(s, a)


.

(3)

In the above, Γ is a projection operator that ensures that the up-
dates to π stay within the simplex D = {(x1, . . . , xq) | xi ≥

0,∀i = 1, . . . , q,
q

j=1 xj ≤ 1}, where q = |A|. Further, the step-
sizes b(n) and c(n) satisfy
∞
n=1

c(n) =

∞
n=1

b(n) = ∞,

∞
n=1


c2(n)+ b2(n)


< ∞ and

b(n) = o(c(n)).

Remark 1 (Connection to Algorithm 2 of [1]). From Proposition 1,
we have that

√
π(s, a)g(s, a) is a descent direction for π(s, a). This

implies π(s, a)α ×
√
π(s, a)g(s, a) for any α ≥ 0, is also a descent

direction. Hence,

a generic update rule for π is : πn+1(s, a)

= Γ


πn(s, a)+ b(n)(πn(s, a))α

′

gn(s, a)

, for any α′

≥
1
2
.

The special case of α′
= 1 coincides with the π-recursion in Algo-

rithm 2 of [1].

5. Convergence analysis

For the purpose of analysis, we assume that the underlying
Markov chain for any policy π ∈ Π is irreducible.
Main result. Let vπ = [I − βPπ ]−1 Rπ , where Rπ =< r(s, π), s ∈

S>T is the column vector of rewards and Pπ = [p(y|s, π), s ∈

S, y ∈ S] is the transition probability matrix, both for a given π .
Consider the ODE:
dπ(s, a)

dt
=Γ̄


π(s, a)gπ (s, a)


, ∀a ∈ A, s ∈ S,where (4)

gπ (s, a) :=r(s, a)+ β

y∈U(s)

p(y|s, a)vπ (y)− vπ (s). (5)

In the above, Γ̄ is a projection operator defined by Γ̄ (ϵ(π)) :=

limα↓0
Γ (π+αϵ(π))−π

α
, for any continuous ϵ(·).

Theorem 2. Let K denote the set of all equilibria of the ODE (4), G the
set of all feasible points of the problem (2) and K̂ := K ∩ G. Then, the
iterates (vn, πn), n ≥ 0 governed by (3) satisfy

(vn, πn) → K ∗ a.s. as n → ∞, where K ∗
= {(v∗, π∗) | π∗

∈ K̂}.

The algorithm (3) comprises of updates to v on the faster time-
scale and to π on the slower time-scale. Using the theory of two
time-scale stochastic approximation [6, Chapter 6], we sketch the
convergence of these recursions as well as prove global optimality
in the following steps (the reader is referred to the appendix (see
Appendix A) for proof details):
Step 1: Critic convergence. We assume π to be time-invariant
owing to time-scale separation. Consider the ODE:

dv(s)
dt

= r(s, π)+ β

s′∈S

p(s′|s, π)v(y)− v(s), ∀s ∈ S, (6)

where r(s, π) =


a∈A π(s, a)r(s, a) and p(s′|s, π) =


a∈A π
(s, a)p(s′|s, a). It is well-known (cf. [7]) that the above ODE has
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