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a b s t r a c t

Arising from the need to reduce online computations of Model Predictive Controller, this paper proposes
an approach for a linear system with bounded additive disturbance using fewer variables than the
standard. The new variables are chosen so that they transfer the maximal energy to the control inputs.
Several other features are introduced. These include an auxiliary state to ensure recursive feasibility, an
initialization procedure that recovers a substantial portion of the original domain of attraction arising
from the use of fewer variables. A comparison of the domains of attraction associated with the new
variables is also discussed. Run-time computational advantage of more than an order of magnitude
compared with standard approach is demonstrated using several numerical examples although a more
expensive initialization is needed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers theModel Predictive Control (MPC) frame-
work for the discrete-time system

x(t + 1) = Ax(t) + Bu(t) + w(t), w(t) ∈ W , (1)

x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm (2)

where x ∈ Rn, u ∈ Rm and w ∈ Rn are the state, control and dis-
turbance of the system and X andU are appropriate constraint sets
on x and u respectively. It focuses on the reduction of online com-
putations using fewer variables than the standard. Past research in
this direction include Generalized Predictive control [1], blocking
parametrization [2–6], various parametrizations [7,8] and others.
The use of fewer variables naturally leads to a lower online com-
putational effort but it also results in a loss in robustness against
unexpected disturbances in the form of a smaller domain of at-
traction, an issue that is seldom discussed in the literature. Such is-
sues, together with recursive feasibility, closed-loop stability, loss
in performance and the choice of the variables remains open re-
search issues in this line of work. This paper is an attempt to ad-
dress some of these issues by proposing the choice of newvariables
based on Singular Value Decomposition (SVD), introducing an aux-
iliary state for recursive feasibility and a procedure that computes
the initial auxiliary state so as to recover a substantial portion of the
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original domain of attraction. The proposed approach has minimal
computational load during run time. It does require more compu-
tations for the initial auxiliary state. Since this requirement is only
needed at initialization, it is not too restrictive.

The use of SVD inMPC is not new [9,10]. In [9], the reduced vari-
ables are such that loss in the performance index, as compared to
the standard, is minimal. While reasonable, its effectiveness is un-
clear when the states are far from the origin where maneuvering
the constraints is the primary concern. The approach of [10] per-
forms the SVD of a matrix consisting of the snapshots of past con-
trol inputs. Implicit in this approach is that past inputs are good
representations of future maneuvers. Unlike them, this work uses
a reduced set of variables that contains themaximal amount of en-
ergy, a statement that will be made precise in Section 3.

The notations used in this paper are standard. Non-negative and
positive integer sets are indicated by Z+

0 and Z+ respectively with
Zk
i := {i, i + 1, . . . , k}, k ≥ i. Similarly, R+

0 and R+ refer respec-
tively to the sets of non-negative and positive real numbers. Given
a matrix A and a vector b, A:j, Ai: are respectively the jth column
and ith row of A and bk is the kth element. For a square matrix Q ,
Q ≻ (≽)0 means Q is positive definite (semi-definite). For any set
X, Y ⊂ Rn, X ⊕ Y := {x + y : x ∈ X, y ∈ Y } is the Minkowski
sum of X and Y and X ⊖ Y := {z : z + y ∈ X, ∀y ∈ Y } is the
Pontryagin difference of the two sets. Vector 2-norm and matrix
induced 2-norm are denoted by the standard ∥ · ∥ notation with
∥x∥2

Q = xTQx for Q ≻ 0. For distinction from the true system state
x(t) and control u(t), the kth predicted state and control are repre-
sented as xk, uk respectively, or as xk|t and uk|t where the reference
to time is needed. Hence, x0|t = x(t) and u0|t = u(t). In is and n×n
identity matrix.
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The rest of this paper is organized as follows. Section 2 states
the assumptions needed and reviews past results that handles the
additive disturbance. The finite horizon optimization problem is
stated in full in Section 3 including the choice of the new variables
and the auxiliary states. Feasibility and stability results are stated
in Section 4. Approach to recover the domain of attraction via an
initialization process is provided in Section 5. Numerical results
and the conclusions are the remaining two sections.

2. Preliminaries

This section reviews known results of MPC for system (1) and
(2), sets up the notations for subsequent discussion and begins
with the assumptions needed. (A1): (A, B) is stabilizable and x is
measurable. (A2): W is polytope that contains the origin in its
interior (A3): Constraint sets X ⊂ Rn and U ⊂ Rm are polytopes
that contain the origin in their respective interiors. (A4): A set
Xf ⊂ Rn and a feedback gain K ∈ Rm×n are determined such that
Xf is a constraint-admissible disturbance invariant set for system
(1) with u = Kx.

Assumption (A1) is a standard requirement of the system. (A2)
and (A3) are mild assumptions on the disturbance and constraint
sets, made out of computational requirement. (A4) refers to the
existence of Xf such that

AK x + w ∈ Xf , Kx ∈ U for all x ∈ Xf and for all w ∈ W (3)

where AK := A+BK is Schur stable. Such a Xf is known to exist [11]
under assumptions (A2), (A3) for sufficiently small W and can be
computed via an iterative procedure that terminates in a finite
number of steps. Define

F0 := {0}, Ft := W ⊕ AKW ⊕ · · · ⊕ At−1
K W ,

F∞ := lim
j→∞

Fj.
(4)

System (1) with u = Kx becomes x(t + 1) = AK x(t) + w(t) and its
state are

x(t) = At
K x(0) + ft , ft =

t−1
j=0

At−1−j
K w(j) (5)

with ft ∈ Ft for t ∈ Z+

0 . Also, F∞ is the minimal invariant set for
x(t +1) = AK x(t)+w(t) with the property that AK F∞ ⊕W ⊂ F∞.
Additional properties and computations of F∞ are discussed in [12,
13]. With these definitions, an additional assumption, (A5): F∞ ⊂

int(Xf ) is neededwhose satisfaction can be achievedwhen the size
ofW is sufficiently small.

As disturbances are present in (1), it is known that the search for
an admissible control in MPC should be over some family of feed-
back policies instead of the direct values of {u0, u1, . . . , uN−1} [14].
For this purpose, the control parametrization used here is ui =

Kxi + di where K is fixed and given. Consider (1) in the form of
xi+1 = Axi + Bui + wi and the nominal (disturbance-free) system
of (1) x̄i+1 = Ax̄i + Būi with

ūi = Kx̄i + di. (6)

It can be shown that xi − x̄i = fi and ui = ūi + Kfi for any i ∈ Z+

where fi is that given by (5). Hence, the nominal system allows
for a simpler MPC treatment by appropriately strengthening the
constraints [15–17]. Consider a MPC horizon length of N ∈ Z+ and
let

X̄f := Xf ⊖ FN , Xi := X ⊖ Fi, Ui := U ⊖ KFi. (7)

It follows from xi = x̄i + fi and ui = ūi + Kfi that

x̄i ∈ Xi, ūi ∈ Ui =⇒ xi ∈ X, ui ∈ U ∀i ∈ ZN−1
0 (8)

x̄N ∈ X̄f =⇒ xN ∈ Xf . (9)

Eq. (8) shows that constraints (2) can be replaced by x̄i ∈ Xi, ūi ∈ Ui
which, in turn, implies that MPC problem for (1) can be formulated
using (x̄i, ūi) as the state and control variables with appropriate
constraints. Doing so, expressions of (1) and (6) can be equivalently
stated as

x̄+
= Ax̄ + Bū :=

A 0 · · · 0

0
. . . 0

0 · · · 0 A


 x̄0

...
x̄N−1


+

B 0 · · · 0

0
. . . 0

0 · · · 0 B


 ū0

...
ūN−1

 (10)

ū = Kx̄ + d :=

K 0 · · · 0

0
. . . 0

0 · · · 0 K


 x̄0

...
x̄N−1

 +

 d0
...

dN−1

 (11)

where x̄+
:= [x̄T1 · · · x̄TN ]

T
∈ RNn, x̄T := [x̄T0 · · · x̄TN−1] ∈ RNn, ūT

:=

[ūT
0 · · · ūT

N−1] ∈ RNm and dT
:= [dT0 · · · dTN−1] ∈ RNm. Using (5),

these two equations can be equivalently stated as

x̄+
= AK x̄0 + BKd :=

AK
...

AN
K

 x̄0

+


B 0 · · · 0

AKB B · · · 0
...

AN−1
K B AN−2

K B · · · B

 d, (12)

ū = KAx̄0 + Gd :=


K

KAK
...

KAN−1
K

 x̄0

+


I 0 · · · 0
KB I 0
...

...

KAN−2
K B . . . KB I

 d (13)

whereA,K, B,AK ,KA, BK andG are implicitly defined by the equa-
tions above. For notational convenience, let
C := C(X0, . . . , XN−1,U0, . . . ,UN−1, X̄f )

= {(ū, x̄, x̄N) : x̄i ∈ Xi, ūi ∈ Ui, i ∈ ZN−1
0 and x̄N ∈ X̄f } (14)

where Xi,Ui, X̄f are those defined in (7). Note that under (A2)–(A4),
Xi,Ui and X̄f are polytopes represented by linear inequalities in
Rn, Rm and Rn respectively and C is a polytope in RNm+(N+1)n. The
N-stage MPC controller solves at every t , with parameter x = x(t)
the following optimization problem:
Pd(x) : min

d
{Js(d) : x̄0 = x, (12), (13), (ū, x̄, x̄N) ∈ C} (15)

where Js(d) is some appropriate convex function of d. Since the
constraints are all linear equations or inequalities in d, Pd(x) is
a convex programming problem. Pd(x) can also be equivalently
stated using (10), (11) instead of (12), (13) in (15). As a reference
for comparison, the corresponding domain of attraction is
Dd := {x : ∃ d s.t. Pd(x) has a feasible solution}. (16)

The cost function Js(d) is obtained from the standard Linear
Quadratic (LQ) cost which takes the form
N−1
i=0

[xTi Qxi + uT
i Rui] + xTNPxN (17)
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