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In this paper, we consider the topic of model reduction for nonlinear dynamical systems based on
kernel expansions. Our approach allows for a full offline/online decomposition and efficient online
computation of the reduced model. In particular, we derive an a-posteriori state-space error estimator
for the reduction error. A key ingredient is a local Lipschitz constant estimation that enables rigorous a-
posteriori error estimation. The computation of the error estimator is realized by solving an auxiliary

differential equation during online simulations. Estimation iterations can be performed that allow a
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balancing between estimation sharpness and computation time. Numerical experiments demonstrate the
estimation improvement over different estimator versions and the rigor and effectiveness of the error

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, modeling of real world processes like biochemical
reactions or electric circuits naturally leads to a formulation as
dynamical system with inputs and outputs. Mathematically, they
are described by systems of ordinary differential equations (ODEs)
and can be roughly categorized into linear and nonlinear types.
Even though computational power has significantly increased over
the past years, high-resolution models often result in large-scale
dynamical systems that are expensive to simulate. In this context,
the need for fast simulation is particularly evident in many-query
scenarios. They comprise parameter studies or inverse problems
where multiple simulations have to be performed for different
inputs or initial state configurations. Additionally, some dynamical
systems model processes in a real-time setting like control
components and thus also require fast computation without
strong hardware. Within all those settings fast and rigorous error
estimation procedures are important in order to quantify the
model errors introduced by the reduction process.

Consequently, model reduction techniques for dynamical
systems are nowadays subject to intensive research. Work has
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been done for various types of linear systems, e.g. time invariant
[1], time-variant [2] or parameterized systems [3]. For an overview,
we refer the reader to [4-6].

Reduction techniques for nonlinear dynamical systems have
been less investigated, not at least because of the arising
difficulties. As with linear systems, most of them involve
projection of the system into a lower dimensional subspace.
One well known method for nonlinear model reduction is the
trajectory piecewise linear (TPWL) approach [7], which is extended
by moment matching techniques in [8] or to a piecewise-
polynomial scheme in [9]. Various extensions of the balanced
truncation procedure [10] to nonlinear systems are investigated
in [11-13]. An “approximate reduction” method is introduced
in [14] and model reduction for weakly nonlinear systems
by bilinearization has been discussed in [15], for example. In
addition, the special class of bilinear quadratic nonlinearities
has recently been investigated in [16]. A further promising
technique for nonlinear model reduction of dynamical systems
is by means of discrete empirical interpolation [17]. Finally,
computing subspaces by proper orthogonal decomposition (POD)
of presumably statistically representative trajectories [18] is an
expensive but well-established method. This method is also known
as principal component analysis (PCA); see [19] and references
therein for an overview.

In this work, we adopt principles of the reduction technique
proposed in [20], extend the class of usable kernels and provide
novel, efficient a-posteriori error estimators for the resulting
reduced systems. The derived error estimators are tested using a
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synthetic kernel-based example system which resembles typical
real system'’s properties like varying inputs, and the benefits of
different estimator versions are shown. Possible applications of the
reduction technique involve electric circuits [20] or biochemical
systems [21], or more generally, any systems where a good
approximation of the nonlinearity with few kernel components
can be found. Of course any system given by a kernel expansion
can be straightforwardly reduced with rigorous error bounds.

In Section 2 we introduce our base dynamical system and
discuss aspects of the reduction process. Section 3 is concerned
with a-posteriori error estimates and introduces our new local
Lipschitz constant estimation method. Next, Section 4 presents
numerical experiments for synthetic dynamical systems and we
conclude with Section 5. Some auxiliary mathematical details are
presented in Appendix.

2. Reduction of kernel based systems

The starting point of our investigations is the reduction
method introduced in [20], which combines subspace projection
with kernel methods. In model reduction, the latter are used
to approximate the nonlinearities of dynamical systems in
kernel spaces and promise a large potential in the field. Kernel
methods comprise applications from machine learning like
support vector regression [22,23] as well as kernel interpolation
with corresponding theoretical foundation [24,25]. However, those
approximation techniques are out of the scope of this article.
Instead we focus on nonlinear systems whose inner dynamics are
already given by a kernel expansion and investigate the projection
behavior and the resulting a-posteriori error estimators.

2.1. The base dynamical system

Our central assumption is to have a nonlinear kernel expansion

N
FOO =)o x), (1)
i=1

where X = {x1,...,x;} C R? are the centers or support vectors
of the expansion and ¢; € RY the coefficient vectors. The function
@ is a kernel, which is basically a symmetric function ®:RY x
RY — R. We omit further characterizations of kernels and
mention here that the key analytical property is that for some
open 2 C RY each symmetric positive definite kernel spans a
unique Hilbert space Ny (§2) of functions. Those Hilbert spaces
have a special reproducing property and are commonly referred to
as reproducing kernel Hilbert spaces (RKHS). In our context those
RKHS serve as a base class for the dynamical systems functions f,
so (1) implies f € (Ng (.Q))d. For more details on kernels, RKHS
and their applications we refer to [26,24,27], for example.

Now, the base system considered throughout this paper is of the
form

X (t) = f(x) + Bu(t), (2)
y(t) = Cx(t), (3)

where x(t) € RY denotes the state of the system at times t €
[0,T],0 < T < 00, Xy € RY the initial condition, u: [0, T] — R™
an input function with B € R*™ and output y(t) € R* with
Ce kad.

Additionally, in some applications different norms than the
standard Euclidean norm are taken for the state space. Thus, let
G € R be a symmetric positive definite matrix. Then G defines
a scalar product (x, y)¢ := x'Gy on R with induced norm |[x|| :=
J/(x, X)c. Choosing G := I; will yield the standard Euclidean inner
product (-, -) and 2-norm ||-||, where I; denotes the d-dimensional

Xo = Xo,

identity matrix. For example, G is usually chosen as the Gram-
matrix of the finite element/finite volume basis for dynamical
systems obtained from partial differential equation discretizations.

Having introduced the underlying dynamical system (2)-(3)
we now detail the reduction approach using subspace projection.
We assume to have two biorthogonal projection matrices V, W €
R W'V = I, with r <« d denoting the reduced system’s
dimension. The reduced system is then obtained by applying a
Petrov-Galerkin projection to the full system:

Z/(t) = W' (Vz(t)) + W'Bu(t), (4)
2(0) = W'x,  y'(t) = Cvz(b), (5)

where z(t) € R" now denotes the reduced system’s state and
y"(t) the approximate output. Let U = (vy,...,v;) C RY be
the space spanned by the columns v; € R? of V. Consequently,
the reconstructed approximate solution and output are given by
X'(t) := Vz(t) € Uandy (t) = Cx'(t). The requirements on
V, W are now to yield a good approximation x"(t) ~ x(t) and
thus y'(t) =~ y(t) for different initial values and inputs. For the
remainder of this work we will assume the matrix computation
method for V, W as a black-box since our method is applicable
using any basis/projection matrix generation method.

The rest of this section is concerned with the different
projection aspects of the reduction technique for kernel-based
dynamical systems. We will see that the structure of the kernel
expansion allows for dramatic reduction of the computational
costs using certain kernels.

2.2. System projection

At first, the projection into R" by W* can be applied directly to
the coefficient vectors ¢; via ¢/ := W'c;, i = 1--- N. This results in

areduced function " (z) .= Zf’:] ¢/ @ (Vz, x;), with new coefficient
vectors ¢/ € R'.

Unfortunately, the reduced system (4) is still expensive to
simulate given that f is evaluated at X" (t) € R%. In order to avoid
input arguments of high dimension d, we consider two special
classes of kernels.

2.2.1. Inner product kernels

The first type of kernels that allow efficient argument
evaluations are the inner product kernels also mentioned in [20].
It is assumed that @ (x,y) = ¢({x, y)c) for some scalar function
¢:R — R.Then @ (Vz, x;) = ¢((Vz, xi)c) = ¢ ({z, z})) =: D" (z, z))
forz; == V'Gx; € R",i = 1---N. This way, it is sufficient to
project the centers x; into the low-dimensional subspace and the
evaluations of @ can be computed efficiently and loss-less during
the reduced simulation via @". Some examples for those kernels
are the linear kernel @ (x,y) = (x,y)¢ or polynomial kernels
®(x,y) = (14 (x,y)c)P of degree p € N.

2.2.2. Translation- and rotation invariant kernels

In extension to [20] we present here a further class of
kernels that allow for efficient loss-less argument evaluations: The
translation and rotation-invariant kernels @ (x, y) := ¢(||x — y|l¢)
for some scalar function ¢: Ry — R. We impose the additional
requirement x; € U,i.e.x; = Vz;forsomez; € R",i=1---N.Then
we obtain @(Vz,x)) = ¢(|[Vz — Vzillg) = ¢(lIz —zillytgy) =
@' (z, z;) with V!GV being a small R™" matrix inducing a new
norm on R’. Note that the assumption x; € U is of a technical
nature. We either extend U by the span of the x;, or, if the kernel
expansion is created with knowledge of U, one can choose x; € U
in the first place. Those kernels are also commonly referred to
as radial basis functions, of which the Gaussian kernel @ (x,y) =
exp(— ||x — y||? /8%) is probably the most popular example. For
further examples and characterizations of the above mentioned
kernels we refer to [22,27].
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