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a b s t r a c t

This paper treats theH2 andH∞ controls of linear systemswithMarkov jumpdisturbances, via newdesign
methods based on linear matrix inequalities (LMIs). The proposed techniques are especially tailored to
the scenario where the jump process cannot be measured, and apply to homogeneous Markov chains of
any structure. In the scenario of polytopic uncertainty affecting the system matrices, new uncertainty-
dependent methods are introduced for the design of robust controllers. Several numerical examples
illustrate situations where the proposed techniques are less conservative than the ones found in the
literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with linear systems whose switching is
governed by a homogeneous Markov chain with finite state space.
This class is commonly referred to in the specialized literature as
Markov Jump Linear Systems (MJLS for short) (see, e.g., [1–4]), and
has been associated to dynamical systems which are subject to
abrupt changes (e.g., failure) in their dynamics. Our focus is in the
H2 and H∞ control problems, in the scenario in which the con-
trollers have no access to the jump process. We shall be particu-
larly interested in the case in which the class of admissible control
policies considered is of reduced complexity, in the sense that the
control gain is assumed independent of the unknownMarkov chain
(also known as the operation mode of the system). In this case, the
control problem is also dubbed in the specialized literature as the
mode-independent case (see, e.g. [5–8]). The difficulties here as-
sume the form of non-convexity properties, and the methods for
tackling them are all somewhat conservative or inefficient from
the computational point of view (i.e., not solvable in polynomial
time, see, e.g., [9]). An exception to the rule is the case in which the
Markov chain reduces to a generalized Bernoulli process, the so-
called Bernoulli jump case. Nudged by a favorable structure, in con-
junctionwith recent interest in its applications, the Bernoulli jump
case has been fleshed out by an increasing amount of literature on
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this subject. In this setup, for instance, Costa and Fragoso [10] de-
rived criteria for mean square stability which are easier to check
than those related to the more general MJLS case. An H∞ control
scenario has been the subject of Seiler and Sengupta [11], and the
obtained results were subsequently applied to networked control
systems. Ref. [12] also treated this framework, and addressed ro-
bustness issues. Exact parameterizations forH2 andH∞ controllers
were derived in [6]. The study of the Bernoulli jump case has been
of particular interest to the networked control systems literature, in
which the jump process models packet dropout in a communica-
tion link (see, for instance, in [13–16]).

If the transition probabilities of the Markov chain do not
follow the delicate Bernoulli structure then, as far as the authors
are aware, all existing methods in the literature are somewhat
conservative. In [17], for instance, mode-independent stabilization
is tackled via a common Lyapunov function, a technique which is
non-conservative only in some rare cases reported in the switched
systems literature (see [18]). Ref. [19] also treated the mode-
independent stabilization problem, but its correlation with the
current paper is restricted to the scenario of polytopic uncertainty.
The paper do Val et al. [20] introduced a more general setup,
dubbed cluster observations, in which the controller is allowed to
switch within a set of operation modes that do not necessarily
match those of the to-be-controlled system. More recent results
regarding cluster observations can also be found, for instance,
in [21,22]. In the recent paper Oliveira et al. [7], the mode-
independent H2 control is addressed via a two-step procedure,
which involves the computation of a mode-dependent mean
square stabilizing gain, and then feeding the obtained result to an
LMI problem which yields the desired controller. The technique is

http://dx.doi.org/10.1016/j.sysconle.2016.01.002
0167-6911/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2016.01.002
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2016.01.002&domain=pdf
mailto:todorov@lncc.br
mailto:frag@lncc.br
http://dx.doi.org/10.1016/j.sysconle.2016.01.002


M.G. Todorov, M.D. Fragoso / Systems & Control Letters 90 (2016) 38–44 39

then subsequently applied to the control of a DC (direct current)
motor, and the numerical results outperform [20]. A closely related
reference is [8], which addressed the linear quadratic control of
MJLS via a certain time-varying controller which is independent
of the jump process.

1.1. About this paper

In this paper, wemake further foray in the design of controllers
for the case in which we have no access of the Markov chain.
We propose new conditions for H2 and H∞ control. Out of the
bent which wends most of the technique dealing with the mode-
independent case in the specialized literature, which are mere
particularization of mode-dependent techniques, we design new
tools which are firmly associated to the mode-independent setup
and, in fact, it is unclear by now how they could be extended to the
mode-dependent case. A glimpse of some distinguishing aspects of
the proposed approach are as follows.
• Differently fromwhat occurs in [23,21,20], the proposed results

have the desirable feature of not being conservative in the
Bernoulli jump scenario. Although this also occurs in, e.g., [6],
the distinction here is that the proposed results apply toMarkov
chains with general transition probabilities (i.e., they are not
restricted to the Bernoulli structure).

• In the mixed H2/H∞ control setup, the results are expressed
via slack variables which allow for some degree of separation
between the H2 and H∞ variables. The class of systems is also
more general than the one treated in [24].

• The results are amenable to a further degree of relaxation, via
the technique developed in [19]. In the scenario of polytopic
uncertainty, this yields an uncertainty-dependent design of
reduced conservatism. (Following de Souza [19], ‘‘uncertainty-
dependent’’ here means that some of the decision variables
are functions of the polytope vertices, which of course is more
general – hence less conservative – than the simpler case in
which the variables are not allowed to depend on the vertices—
as in e.g. [17].)
The basic definitions and preliminary results which are

necessary to our development are enclosed in Section 2. Section 3
features the first main result of the paper (Theorem 1), which
consists of new H2/H∞ designs via LMIs, followed by a brief
discussion of the Bernoulli jump case (Proposition 1). The scenario
of polytopic uncertainty is then treated in Section 4. The main
result here comes in the form of Theorem 2, which features a
new LMI-based design for robust mode-independent controllers.
Closing the paper, we present in Section 5 several numerical
examples which illustrate the potentials of the proposed results,
along with a brief conclusion in Section 6.

1.2. Notation

We denote by (Ω, F, Fk, P) a complete stochastic basis carry-
ing an increasing filtration Fk ⊂ F on k ∈ {0, 1, 2, . . .}, and by
E the usual mathematical expectation. The notation ℓn

2(Ω, F, P) is
adopted to represent the space of all discrete-timeFk-adapted pro-
cesses of finite energy, i.e., those of the formw = {(w(k), Fk), k =

0, 1, 2, . . .} with ∥w∥
2
ℓ2

,


∞

k=0 E[∥w(k)∥2
] < ∞. Also, Her(G) ,

G + G′ for any G ∈ Rn×n, with G′ standing for the transpose of G.
For X = (X1, . . . , XN), we also define, for later use, the operations

Ei(X) ,

N
j=1

pijXj, E(X) ,

N
j=1

pjXj. (1)

2. Preliminaries

Consider a homogeneous Markov chain θ = {θ(k), k =

0, 1, 2, . . .} in the stochastic basis (Ω, F, Fk, P), with finite state

space S = {1, . . . ,N} and such that, whenever P(θ(k) = i) > 0:

P

θ(k + 1) = j

 θ(k) = i


= pij, (2)

for given pij ≥ 0 such that
N

j=1 pij = 1 for each i ∈ S (i.e.,
[pij] ∈ RN×N is the transition matrix of the Markov chain). The
initial distribution of θ is denoted as follows:

ν = (ν1, . . . , νN), νi , P(θ(0) = i), i ∈ S. (3)

The subject matter of this paper is the design of static state-
feedback controllers of the form

u(k) = Kx(k), K ∈ Rnu×n (4)

for the control systemx(k + 1) = Aθ(k)x(k) + Bθ(k)u(k) + Jθ(k)w(k) + Eθ(k)ϖ(k)
z(k) = Cθ(k)x(k) + Dθ(k)u(k)
ζ (k) = Fθ(k)x(k) + Gθ(k)u(k) + Hθ(k)ϖ(k)

(5)

where x = {x(k) ∈ Rn, k = 0, 1, 2, . . .} is the measured state;
w = {w(k) ∈ Rnw , k = 0, 1, 2, . . .} and z = {z(k) ∈ Rnz , k =

0, 1, 2, . . .} are H2 inputs and outputs; and ϖ = {ϖ(k) ∈

Rnϖ , k = 0, 1, 2, . . .}, ζ = {ζ (k) ∈ Rnζ , k = 0, 1, 2, . . .} are
H∞ inputs and outputs.

Remark 1. The control system treated in [24] is a particular case
of (5), because separate channels for H2 and H∞ performance are
considered, and because J and E are allowed to depend on θ in (5).

The combination of (5) and (4) yields the closed-loop system

GK =

x(k + 1) =Aθ(k)x(k) + Jθ(k)w(k) + Eθ(k)ϖ(k)
z(k) =Cθ(k)x(k)
ζ (k) =Fθ(k)x(k) + Hθ(k)ϖ(k)

(6)

withAi = Ai + BiK , Ci = Ci + DiK , Fi = Fi + GiK , (7)

whose analysis is the subject of the remainder of this section.

Definition 1 (See [1, Chapter 3]). The closed-loop system (6) is
termed internally mean square stable (internally MSS) whenever

w ≡ 0, ϖ ≡ 0 =⇒ lim
k→∞

E

∥x(k)∥2

= 0 ∀ x0, θ0. (8)

We define the corresponding set of all internally mean square
stabilizing controllers as

K =


K ∈ Rnu×n, (8) is satisfied


. (9)

We shall borrow from [1, Definition 4.7] and [24, Definition 4]
the following definitions for the H2 and H∞ norms of the
system (6).

Definition 2 (H2 Norm). Whenever system (6) is internally MSS
(i.e., K ∈ K), we define its H2 norm as

∥GK∥2 =


nw
i=1

N
j=1

νj

∞
k=0

E
z i0(k)2

1/2

(10)

where z i0 stands for theH2 output of system (6) when x0 = 0, ϖ ≡

0, and the H2 input

wi(k) =


ei, k = 0,
0, k = 1, 2, . . . ,

is applied, with ei standing for the ith vector of the canonical basis
in Rnw .
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