
Systems & Control Letters 90 (2016) 45–53

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

On the relation between strict dissipativity and turnpike properties✩

Lars Grüne a,∗, Matthias A. Müller b
a Mathematical Institute, University of Bayreuth, 95440 Bayreuth, Germany
b Institute for Systems Theory and Automatic Control, University of Stuttgart, 70550 Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 19 June 2015
Received in revised form
16 October 2015
Accepted 21 January 2016
Available online 19 February 2016

Keywords:
Strict dissipativity
Turnpike property
Discrete time optimal control

a b s t r a c t

For discrete time nonlinear systems we study the relation between strict dissipativity and so called
turnpike-like behavior in optimal control. Under appropriate controllability assumptions we provide
several equivalence statements involving these two properties. The relation of strict dissipativity to an
exponential variant of the turnpike property is also studied.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dissipativity and strict dissipativity have been recognized as
important systems theoretic properties since their introduction
by Willems in [1,2]. Dissipativity formalizes the fact that a sys-
tem cannot store more energy than supplied from the outside,
strict dissipativity in addition requires that a certain amount
of the stored energy is dissipated to the environment. As such,
dissipativity like properties are naturally linked to stability consid-
erations and thus particular forms of dissipativity like, e.g., passiv-
ity naturally serve as tools for the design of stabilizing controllers
[3,4]. In recent years, dissipativity properties turned out to be an
important ingredient for understanding the stability behavior of
economic model predictive control (MPC) schemes, [5–8]. Loosely
speaking, they allow for the construction of a Lyapunov function
from an optimal value function also in case the stage cost of the
optimal control problem under consideration is not positive def-
inite. Moreover, they are intimately related to the existence of
steady states at which the system is optimally operated, see
[9–11]. The present paper is similar to the last reference in the
sense that necessary and sufficient conditions for strict dissipa-
tivity are derived in terms of properties of certain optimal control
problems. However, in contrast to [11] in which optimal operation
at steady states is considered, in this paperwe focus on the so called
turnpike property and more general turnpike-like behavior.

✩ The research was supported by DFG Grant GR1569/13-1.
∗ Corresponding author.

E-mail addresses: lars.gruene@uni-bayreuth.de (L. Grüne),
matthias.mueller@ist.uni-stuttgart.de (M.A. Müller).

The turnpike property has been observed and studied already
in the 1940s and 1950s by von Neumann [12] and by Dorfman,
Samuelson and Solow [13] in the context of economic optimal
control problems. It formalizes the phenomenon that optimally
controlled trajectories ‘‘most of the time’’ stay close to an optimal
steady state. In this paper, we use variants of this property which
also demand that trajectories which are nearly optimal or whose
value lies near the steady state value exhibit this behavior (see
Definition 2.2, for details). Given its usefulness, e.g., in the design
of optimal trajectories [14] or – again – in the analysis of economic
MPC schemes [15,7,8], both in discrete and continuous time, it is
of no surprise that there is a rich body of literature on conditions
which ensure that the turnpike property does indeed occur, see,
e.g., the monographs [16,17] or the recent papers [18,19] and the
references therein.

Although the deep relation between dissipativity and optimal
control was studied already in the early days of dissipativity the-
ory [20], it seems that only in [7, Theorems 5.3 and 5.6] it was
observed that strict dissipativity plus a suitable controllability
property is sufficient for the occurrence of turnpike-like behavior
(though there are earlier similar results, like [16, Theorem 4.2], ob-
serving that Assumption 4.2 in this reference is essentially a lin-
earized version of strict dissipativity). Likewise, it is easily seen
that strict dissipativity implies that the system is optimally oper-
ated at a steady state. Motivated by recently developed converse
statements, i.e., results which show that optimal operation at a
steady state may also imply dissipativity [9–11], in this paper for
general nonlinear discrete time systems we investigate whether
the implication ‘‘strict dissipativity⇒ turnpike-like behavior’’ also
admits for converse statements. Under suitable controllability as-
sumptionswe show that this is indeed the case andweprovide two
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main theoremswhich provide equivalence relations between strict
dissipativity and turnpike-like behavior under different structural
assumptions. Moreover, we show that the exponential turnpike
property [18] also implies strict dissipativity.

The paper is organized as follows. Section 2 defines the problem
setting and gives precise mathematical definitions for the various
properties used in this paper. Section 3 summarizes results from
the literature and provides auxiliary technical results. The main
theorems and their proofs are given in Section 4. Section 5
concludes the paper.

2. Setting and definitions

We consider discrete time nonlinear systems of the form

x(k + 1) = f (x(k), u(k)), x(0) = x0 (2.1)

for a continuous map f : X × U → X , where X and U are normed
spaces. We impose the constraints (x, u) ∈ Y ⊆ X ×U on the state
x and the input u and defineX := {x ∈ X | ∃u ∈ U : (x, u) ∈ Y} and
U := {u ∈ U | ∃x ∈ X : (x, u) ∈ Y}. A control sequence u ∈ UN is
called admissible for x0 ∈ X if (x(k), u(k)) ∈ Y for k = 0, . . . ,N−1
and x(N) ∈ X. In this case, the corresponding trajectory x(k) is
also called admissible. The set of admissible control sequences is
denoted by UN(x0). Likewise, we define U∞(x0) as the set of all
control sequences u ∈ U∞ with (x(k), u(k)) ∈ Y for all k ∈ N0.
In order to keep the presentation technically simple, we assume
that X is controlled invariant, i.e., that U∞(x0) ≠ ∅ for all x0 ∈ X.
We expect that our results remain true if one restricts the initial
values under consideration to the viability kernel X∞ := {x0 ∈ X |

U∞(x0) ≠ ∅}, however, the technical details of this extension are
beyond the scope of this paper. The trajectories of (2.1) are denoted
by xu(k, x0) or simply by x(k) if there is no ambiguity about x0 and
u.

Given a continuous stage cost ℓ : Y → R and a time horizon
K ∈ N, we consider the optimal control problem

min
u∈UK (x0)

JK (x0, u) with JK (x0, u) =

K−1
k=0

ℓ(x(k), u(k)) (2.2)

subject to (2.1). By VK (x0) := infu∈UK (x0) JK (x0, u) we denote the
optimal value function of the problem. For Definition 2.2(c) and
(d), we will need the existence of the global minimum in (2.2).
However, for most of the statements in this paper its existence
is not needed. Moreover, in those statements which require the
existence of a minimizing control sequence we do not need its
uniqueness.

The next definition formalizes the strict dissipativity property,
originally introduced by Willems [1] in continuous time and by
Byrnes and Lin [21] in the discrete time setting of this paper.While
one may formulate dissipativity with respect to arbitrary supply
rates s : X × U → R, here we restrict ourselves to supply rates of
the form s(x, u) = ℓ(x, u) − ℓ(xe, ue) for ℓ from (2.2) and a steady
state (xe, ue) of (2.1), which will be the form used throughout this
paper. We recall that (xe, ue) ∈ Y is a steady state of (2.1) if
f (xe, ue) = xe.

Definition 2.1. Given a steady state (xe, ue), the optimal control
problem (2.1), (2.2) is called strictly dissipative with respect to the
supply rate ℓ(x, u) − ℓ(xe, ue) if there exists a storage function
λ : X → R bounded from below and a function ρ ∈ K∞ such
that

ℓ(x, u) − ℓ(xe, ue) + λ(x) − λ(f (x, u)) ≥ ρ(∥x − xe∥) (2.3)

holds for all (x, u) ∈ Y with f (x, u) ∈ X. The system is called
dissipative if the same property holds with ρ ≡ 0.

The next definition formalizes four variants of turnpike-like
behavior. The behavior of the trajectories described in the four
definitions is essentially identical and in all cases demands that
the trajectory stays in a neighborhood of a steady state most of the
time. What distinguishes the definitions are the conditions on the
trajectories under which we demand this property to hold and in
case of (d) the bound on the size of the neighborhood.

Definition 2.2. Consider the optimal control problem (2.1), (2.2)
and let (xe, ue) be a steady state of (2.1).

(a) The optimal control problem is said to have turnpike-like
behavior of near steady state solutions, if there exist Ca > 0 and
ρ ∈ K∞ such that for each x ∈ X, δ > 0 and K ∈ N, each
control sequence u ∈ UK (x) satisfying JK (x, u) ≤ Kℓ(xe, ue)+δ
and each ε > 0 the value Qε := #{k ∈ {0, . . . , K − 1} |

∥xu(k, x) − xe∥ ≤ ε} satisfies the inequality Qε ≥ K − (δ +

Ca)/ρ(ε).
(b) The optimal control problem is said to have the turnpike-like

behavior of near optimal solutions, if there exist Cd > 0 and ρ ∈

K∞ such that for each x ∈ X, δ > 0 and K ∈ N, each control
sequence u ∈ UK (x) satisfying JK (x, u) ≤ VK (x) + δ and each
ε > 0 the value Qε := #{k ∈ {0, . . . , K −1} | ∥xu(k, x)−xe∥ ≤

ε} satisfies the inequality Qε ≥ K − (δ + Cd)/ρ(ε).
(c) The optimal control problem is said to have the (steady state)

turnpike property, if there exist Cb > 0 and ρ ∈ K∞ such that
for each x ∈ X and K ∈ N and any corresponding optimal
control sequence u⋆

∈ UK (x) and ε > 0 the value Qε := #{k ∈

{0, . . . , K − 1} | ∥xu⋆(k, x) − xe∥ ≤ ε} satisfies the inequality
Qε ≥ K − Cb/ρ(ε).

(d) The optimal control problem is said to have the exponential
input-state turnpike property if there is Cc > 0 and η ∈

(0, 1) such that for each x ∈ X and K ∈ N and any corre-
sponding optimal control sequence u⋆

∈ UK (x) the inequality
max{∥xu⋆(k, x) − xe∥, ∥u⋆(k) − ue

∥} ≤ Cc max{ηk, ηK−k
} holds

for all but at most Cc times k ∈ {0, . . . , K − 1}.

The turnpike-like behavior of near steady state solutions (a)
ensures that each trajectory for which the associated cost is close
to the steady state value stays most of the time in a neighborhood
of xe. However, it does not demand that such trajectories exist for
initial values x ≠ xe. The turnpike-like behavior of near optimal
solutions (b) requires the same property to hold for all trajectories
whose associated cost is close to the optimal one, while the
(steady-state) turnpike property (c) demands this behavior only
for the optimal trajectories. The exponential input-state turnpike
property (d) strengthens this property in two ways: the imposed
inequality involves x and u and the distance from the steady state
is required to decrease exponentially fast. While (c) is the property
that is most often found in the literature when turnpike properties
are discussed, it turns out that for the purpose of this paper the
other three properties are more suitable.

It is straightforward to see that (d) implies (c) and that (b)
implies (c) with Cb = Cd. Moreover, if there exists a constantD > 0
with VK (x) ≤ Kℓ(xe, ue) + D for all x ∈ X then (a) implies (b) with
Cd = Ca + D, cf. Lemma 3.9. This property and its converse variant
are formalized as follows.

Definition 2.3. Consider the optimal control problem (2.1), (2.2)
and let (xe, ue) be a steady state of (2.1).

(a) We say that xe is cheaply reachable if there exists a constant
D > 0 with VK (x) ≤ Kℓ(xe, ue) + D for all x ∈ X and all K ∈ N.

(b) We say that the system is non-averaged steady state optimal
at (xe, ue) if there exists a constant E > 0 with VK (x) ≥

Kℓ(xe, ue) − E for all x ∈ X and all K ∈ N.
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