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a b s t r a c t

We prove the existence of positive linear switching systems (continuous time), whose trajectories grow
to infinity, but slower than a given increasing function. This implies that, unlike the situation with linear
ODE, the maximal growth of trajectories of linear systemsmay be arbitrarily slow. For systems generated
by a finite set of matrices, this phenomenon is proved to be impossible in dimension 2, while in all bigger
dimensions the sublinear growth may occur. The corresponding examples are provided and several open
problems are formulated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a linear ordinary differential equation (ODE) with constant
coefficients ẋ(t) = Ax(t), t ∈ R+, where x(t) ∈ Rd and A is a
real d × d matrix, the fastest growth of trajectories is exponential
with the parameter σ = σ(A) equal to the spectral abscissa, i.e.,
the biggest real part of eigenvalues of A. In particular, the system is
stable, i.e., all its trajectories converge to zero as t → ∞, precisely
when σ < 0. In case σ = 0, the system is bounded, i.e., has
bounded trajectories, apart from the case of resonance, when there
are nontrivial Jordan blocks of eigenvalues with zero real part. In
that case, the fastest growth is always polynomial with integer
degree: ∥x(t)∥ ≍ t ℓ−1, t → ∞, where ℓ is the largest size
of those Jordan blocks called the resonance degree of the system.
In particular, every system is either bounded or has at least linear
growth.

The same situation occurs for discrete systems x(t + 1) =

Ax(t), t ∈ N ∪ {0}. If the spectral radius ρ(A) is equal to one, then
the trajectories are unbounded if and only if there are nontrivial
Jordan blocks corresponding to the largest by modulus eigenval-
ues. The fastest growth is again tℓ−1, where ℓ is the largest size of
those blocks.

The resonance phenomenon have countless applications. Its
analysis becomes much more difficult, when the matrix A may
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depend on time and take values from a given compact control set of
matrices A. In this case, we obtain a dynamical system of the form
ẋ(t) = A(t)x(t);
x(0) = x0,

(1)

where A(·) : [0, +∞) → A, is a measurable function called the
switching law. This is a continuous linear switching system (LSS).
A solution x : R+ → Rd of this system is called its trajectory
corresponding to that switching law and to the initial condition
x(0) = x0. For a single-matrix setA = {A}, the LSS becomes a usual
linear ODE. There is an extensive bibliography on the theory of LSS
andmany applications in control, dynamical systems, engineering,
economics, biology, etc., see [1–7] and references therein.

The system is stable if x(t) → 0 as t → ∞ for every switching
law A(·). Thus, the stability only depends on the compact familyA.
Denote F(t) = FA(t) = sup{∥x(t)∥ | ∥x0∥ = 1}, where the
supremum is computed over all switching laws A(·). The system is
stable precisely when F(t) → 0 as t → ∞. The Lyapunov exponent
σ(A) is defined as

σ(A) = lim sup
t→∞

1
t
ln F(t).

For a single-matrix set A, this becomes the spectral abscissa. The
system is stable if and only if σ(A) < 0 [6]. If σ(A) > 0, then there
are unbounded trajectorieswith an exponential growth as t → ∞.
In the boundary case σ(A) = 0, the system is never stable, i.e.,
there is at least one trajectory that does not converge to the origin
as t → ∞ [1]. We focus on the question whether the system is
bounded in this case, i.e., all its trajectories are bounded.
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Definition 1. In the case σ(A) = 0, system (1) is calledmarginally
stable if it is bounded, otherwise it is called marginally unstable.

It is known that the trajectories of marginally unstable systems
can grow at most polynomially, and, moreover, ∥x(t)∥ ≤ C(1 +

t d−1), t ∈ R+, where d is the dimension. Similarly to the case of
one matrix, a generic system with σ(A) = 0 is bounded. It can be
unbounded only if it is reducible, i.e., all matrices from A, in some
common basis, have the block upper triangular form:

A =


A(1)

∗ · · · ∗

0 A(2)
∗

...
...

. . . ∗

0 · · · 0 A(n)

 , (2)

with irreducible families A(i)
= {A(i), A ∈ A} in all the diag-

onal blocks, i = 1, . . . , n. It is known that σ(A) = maxi=1,...,n
σ(A(i)) [1]. The number r of blocks for which this maximum is at-
tained is called the valency of the system. It was shown in [3] that
F(t) ≤ C (1 + t r−1).

Similarly to (1), a discrete time switching system is the following
difference equation:
x(t + 1) = A(t) x(t), t ∈ N ∪ {0};
x(0) = x0,

(3)

where the switching law A(t) is a sequence of elements from A.
The notions of trajectory, stability, boundedness, the growth F(t),
etc., are directly extended to discrete systems. A similar estimate
of growth F(t) ≤ C(1 + t r−1) takes place for discrete systems [8].

1.1. Our results

There is a lot of similarity between linear ODE and general
linear switching systems. In case σ = 0, the system is ‘‘typi-
cally’’ bounded. The existence of unbounded trajectories requires
reducibility of all matrices to the form (2) and coincidence of Lya-
punov exponents of several blocks (an analogue of resonance). The
growth of trajectories in this case is at most polynomial with de-
gree bounded above by the total number of blocks with the largest
Lyapunov exponent (an analogue of the resonance degree). See [3]
for sharpening those results, which revealed even more similar-
ity with the single-matrix case. Our main problem is whether the
growth is at least polynomial?We focus on continuous LSS and ad-
dress the following questions:

Is the maximal growth of trajectories of a marginally unstable
LSS always polynomial with integer degree? In particular, whether
an unbounded system has at least linear growth, as in the single-
matrix case? Can the function F(t) grow slower than polynomially,
say, logarithmically?

We shall see that the answers depend on whether the family
A is finite (i.e., consists of finitely many matrices) or infinite. The
finite case turns out to be more difficult and interesting. Note that
the systemwith a control setA has the same growth of trajectories
as that with co(A), where co(·) is the convex hull [6]. Hence, the
case of finite A is essentially the same as the case of a polytope set
A.

In Theorem2,we show the existence of systemswith arbitrarily
slow growth. For every positive increasing to infinity function f (t),
there is an unbounded LSS for which F(t) grows slower than f (t)
as t → ∞. Such systems exist in all dimensions d ≥ 2 and can be
constructed positive (i.e., all their matrices are Metzler). However,
in case d = 2, this phenomenon never occurs for finite systems. By
Theorem1 proved in Section 2, if the set of 2×2matricesA is finite
(polytope) or infinite but not containing zero, then a marginally
unstable system always has linear growth: F(t) ≍ t as t → ∞.

Already those results demonstrate a crucial difference between
finite (polytope) and general cases. In viewof Theorems1 and2, the
slow growth phenomenon emerges because of matrices of small
norms in A. A question arises if the slow growth possible for finite
families in higher dimensions? Theorem 3 gives an affirmative
answer. It provides an example of two matrices that generate an
LSS in R3 with themaximal growth close to

√
t . Thus, starting with

the dimension 3, a sublinear growth of F(t) is possible even for
finite families. The proof of Theorem 3 is surprisingly difficult and
required some special technique (Section 5).

Theorems 1–3 answer two open questions formulated in [9].
Their possible generalizations (for a slower growth or for positive
systems) are left as openproblems in Section 6. To prove Theorem1
we derive a criterion of marginal stability for two-dimensional
finite systems (Proposition 1). An open problem is formulated in
Section 6 on extensions of that result to higher dimensions.

1.2. Related works and known results

Resonance and marginal instability of linear switching systems
have been analyzed in the literature in various contexts. In the
study ofwavelets, refinement functional equations, and affine frac-
tal curves, marginal stability is responsible for Lipschitz continuity
and for boundedness of variation of solutions [10,11,8]. It is impor-
tant for trackability of autonomous agents in sensor networks [12],
in classifications of finite semigroups of integer matrices [13], in
the problem of asymptotic growth of some regular sequences [14],
in the stability analysis of LSS [3,7,9], etc.

The maximal rate of growth of marginally unstable systems
were estimated in succession in several works (see [3] for the
discussion and references). Those results give only the upper
bounds of the polynomial growth and necessary conditions for
marginal instability. Criteria of marginal instability are known
only in some favorable cases [3,9,7]. For discrete systems, possible
rates of growth of trajectories were found in several special cases.
It was proved to be polynomial with integer degree in case of
integer nonnegativematrices [13], and then extended to all integer
matrices [14]. The first examples of discrete systemswith sublinear
growth were presented in [15] for general LSS and in [9] for finite
ones. For continuous LSS those constructions are not applicable and
the answer was unknown [9, open problem 3].

1.3. Notation

In the sequel we consider only continuous LSS. We identify
a system with its control set A generating it. A matrix is called
Metzler if all its off-diagonal elements are nonnegative. A system
is positive if all matrices from A are Metzler. See [4,5] for results
on positive systems.

We use the standard notation g(t) = o(f (t)) and g(t) =

O(f (t)) as t → ∞ meaning limt→∞

 g(t)
f (t)

 = 0 and lim supt→∞ g(t)
f (t)

 < ∞ respectively. We say that a system grows slower (not
faster) than a positive function f (t) if F(t) = o(f (t)) (respectively,
F(t) = O(f (t))) as t → ∞. Two values are asymptotically equiv-
alent (f (t) ≍ F(t)) if they grow not faster each other. We use bold
letters to denote vectors, ∥ · ∥ is a Euclidean norm.

2. Two-dimensional finite systems: the marginal instability
means linear growth

We begin our analysis with two-dimensional LSS. In this case,
any unbounded system has at least linear growth, provided the
family A does not contain a sequence that tends to zero.



Download English Version:

https://daneshyari.com/en/article/751992

Download Persian Version:

https://daneshyari.com/article/751992

Daneshyari.com

https://daneshyari.com/en/article/751992
https://daneshyari.com/article/751992
https://daneshyari.com

