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a b s t r a c t

In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions
of Ito–Levy type as a LP problem in a measure space, and prove that the optimal value functions of
both problems coincide. The main tools are the dual formulation of the LP primal problem, which is
strongly connected to the notion of sub-solution of the partial integro-differential equation of Hamil-
ton–Jacobi–Bellman type associated with the optimal control problem, and the Krylov regularization
method for viscosity solutions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This short note revisits the infinite-dimensional linear pro-
gramming (LP) approach to stochastic optimal control problems.
We reformulate the problem of minimizing a infinite-horizon cost
functional for controlled jump-diffusions of Ito–Levy type over a
set of admissible controls as a linear program in a certain measure
space. The linear objective function is the integral of the cost func-
tion against the occupation measure of the controlled process. The
main challenge in this LP approach is to prove equality of the op-
timal value functions of the original control problem V (x) and the
associated infinite-dimensional linear program ρ(x), and absence
of duality gap between the primal and dual programs (strong du-
ality).

Using measure-valued (relaxed) controls, Stockbridge [1]
proved the equality ρ = V for ergodic optimal control of Markov
processes and existence of optimal controls. Bhatt and Borkar [2]
and Kurtz and Stockbridge [3] extended these results to the case
of feedback controls for time-inhomogeneous finite horizon and
discounted infinite horizon problems. Cho and Stockbridge [4],
Taksar [5] and Helmes and Stockbridge [6] obtained similar results
for optimal stopping and singular control problems.

More recently, using the dual formulation of the primal LP
problem and viscosity solution theory, Buckdahn et al. [7] proved
the equality ρ = V in the case of optimal control diffusions
with compact state space. Goreac and Serea [8] proved the same
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result for finite-horizon and optimal stopping problems. In this
paper we show that this approach can be easily extended to the
jump-diffusion case.We emphasize that our proof does not present
any significant innovation as we follow closely the arguments
in the proof of Theorem 6.4 in Jakobsen et al. [9]. However, to
the best of our knowledge, this is the first paper that deals with
the LP approach to stochastic optimal control problems for jump-
diffusions.

Let us briefly describe the contents of this paper. In Section 2
we introduce the setting for the optimal control problem of jump-
diffusions of Itô–Levy type and formulate the primal LP problem
associated with the optimal control problem and its dual. In
Section 3 we recall the definition of viscosity solution for partial
integro-differential equations and prove the main result using the
Krylov regularization and results from Jakobsen et al. [9].

2. Optimal control problem and LP formulation

Let (Ω, F , P) be probability space endowed with a filtration
F = {Ft}t≥0 satisfying the usual conditions, and let {Wt}t≥0 be
a standard d-dimensional Brownian motion with respect to F. Let
E = RN

\ {0} and let ν(dz) be a Levy measure on B(E), that is, a
non-negative σ -measure satisfying
E
(|z|2 ∧ 1) ν(dz) < +∞.

Let N(dz, dt) be a homogeneous Poisson random measure with
compensator intensity measure ν(dz) dt , and let Ñ(dz, dt) denote
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the compensated Poisson randommeasure

Ñ(dz, dt) := N(dz, dt) − ν(dz) dt.

Let U be a compact metric space. For each F-adapted U-valued
control process u = {ut}t≥0 consider the controlled Levy–Itô
equation

dXt = b(Xt , ut) dt + σ(Xt , ut) dWt

+


E
η(Xt−, ut−, z) Ñ(dz, dt)

X0 = x.

(2.1)

The coefficients b : RN
× U → RN , σ : RN

× U → RN×d and
η : RN

× U × E → RN satisfy conditions (A2) and (A3) below.
The class U(x) of admissible control policies is defined as the set
of control processes u = {ut}t≥0 for which Eq. (2.1) has an unique
strong solution X x,u

=

X x,u
t


t≥0.

Let c > 0 be a fixed discount rate and h : RN
× U →

(−∞, +∞] denote the cost-to-go function. Let J be the infinite-
horizon discounted cost functional

J(x, u) := E


∞

0
e−ct h(X x,u

t , ut) dt


.

We will use the following norms:

|φ|0 := sup
x∈RN

|φ(x)| , [φ]1 := |Dφ|0 and

|φ|1 := |φ|1 + [φ]1

and assume the following conditions:

1. The Levy measure ν(dz) satisfies
|z|≥1

em|z|ν(dz) < ∞ (A1)

for somem > 0.
2. There exists K > 0 such that for all u ∈ U

|b(·, u)|1 + |σ(·, u)|1 + |c(·, u)|1 + |h(·, u)|1 ≤ K (A2)

and

|η(·, u, z)|1 ≤ K

|z| 1{0<|z|<1}(z) + em|z|1{|z|≥1}(z)


. (A3)

Condition (A1) is equivalent to the Levy processwith Levymeasure
ν(dz) having finite moments of all orders, see e.g. Applebaum
[10, Section 2.5]. It is satisfied, for instance, by one-dimensional
tempered α-stable processes with Levy measure

ν(dz) =
C1e−λ1z

z1+α1
1R+

(z) dz +
C2e−λ2|z|

|z|1+α2
1R−

(z) dz

with C1, C2 ≥ 0, λ1, λ2 > 0 and α1, α2 < 2. Under conditions
(A1)–(A3), for each u ∈ U(x) there exists an unique strong
solution to Eq. (2.1) and satisfies the following estimate, see
e.g. Applebaum [10, Section 6.6]:

E


sup

t∈[0,T ]

X x,u
t

p ≤ C(1 + |x|p) (2.2)

for all p ≥ 2. Themain object of study of this paper is the stochastic
optimal control problem

V (x) := inf
u∈U(x)

J(x, u), x ∈ R
N (2.3)

and the following linear programming (LP) formulation: for each
x ∈ RN and u ∈ U(x), denote with γ x,u the expected discounted
occupation measure on B(RN

× U) defined as

γ x,u(Q ) := E


∞

0
e−ct1Q (X x,u

t , ut) dt


, Q ∈ B(RN
× U).

Using approximation of h by simple functions, it is easy to prove
that the occupation measure γ x,u satisfies

J(x, u) =


RN×U

h(y, u) γ x,u(dy, du).

Let C2
pol(R

N) denote the class of C2-functions f : RN
→ R with

polynomial growth. For each u ∈ U fixed, let Au
+ Ju denote the

partial integro-differential operator

Auf (x) := ⟨b(x, u),Df (x)⟩ +
1
2
Tr[σ(x, u)σ (x, u)∗D2f (x)],

Juf (x) :=


E


f (x + η(x, u, z))

− f (x) − 1{|z|<1} ⟨η(x, u, z),Df (x)⟩

ν(dz)

for f ∈ C2
pol(R

N). Here Df (x) and D2f (x) denote the vector and
square matrix of first and second-order partial derivatives of f
respectively.

Notice that the integral term in the operator Ju is well-defined
due to the exponential decay of the Levy measure ν(dz) at infinity
(see Assumption A.1) and the fact that the singularity at z = 0 is
integrable for any f ∈ C2(RN), see e.g. Applebaum [10, Section
3.3].

Using Itô’s formula for Levy–Itô processes, Kunita’s inequality
and estimate (2.2), for any f ∈ C2

pol(R
N) and T > 0, we have

E[e−cT f (X x,u
T )] − f (x)

= E

 T

0
e−ct 

[(A + J)f ](X x,u
t , ut) − cf (X x,u

t )

dt


.

Also from estimate (2.2) we have

lim
T→∞

E[e−cT f (X x,u
T )] = 0.

By the dominated convergence theorem, taking the limit as T →

∞ it follows:

E


∞

0
e−ct

[cf − (A + J)f ](X x,u
t , ut) dt


= f (x).

We have proved that the occupation measure γ x,u satisfies the
linear constraint,
RN×U

[cf − (Au
+ Ju)f ](y) γ x,u(dy, du) = f (x),

∀f ∈ C2
pol(R

N). (2.4)

This suggests to consider the following LP problem over the vector
space Mb(R

N
× U) of finite signed measures on B(RN

× U):

ρ(x) := inf

RN×U

h(y, u) µ(dy, du)

subject to µ ∈ Mb(R
N

× U), µ ≥ 0

and

RN×U

[cf − (Au
+ Ju)f ](y) µ(dy, du) = f (x),

∀f ∈ C2
pol(R

N). (2.5)

Clearly, we have ρ ≤ V . The main purpose of this note is to prove
that in fact equality ρ = V holds.

In order to formulate a LP problem with the linear constraint
(2.4), and its dual, we recall briefly some facts and notation con-
cerning infinite-dimensional linear programming. Two topological
real vector spaces X, Y are said to form a dual pair if there ex-
ists a bilinear form ⟨·, ·⟩ : X × Y → R such that the mappings
X ∋ x → ⟨x, y⟩ ∈ R for y ∈ Y separate points of X and the
mappings Y ∋ y → ⟨x, y⟩ ∈ R for x ∈ X separate points of Y.

We endow X with the weak topology σ(X, Y), i.e. the coarsest
topology for which the maps X ∋ x → ⟨x, y⟩ ∈ R are continuous
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