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a b s t r a c t

This paper investigates the problem of finite-time formation control formulti-agent systemswith general
linear dynamics. First of all, the considered formation problem is converted into the motion planning
problem,where the systems are steered from initial positions to the desired terminal configurations. Then,
by using Pontryagin maximum principle, an optimal formation control law is developed for multi-agent
systems based on some invertible conditions. With the designed control law, the multi-agent systems
can achieve the desired formation in finite time, where the formation configurations and the settling
time can be specified in advance according to task requirements. Meanwhile, a performance index is
guaranteed to be optimal. Further, it is proved that the formation problem concerned is solved if and
only if the linear systems are controllable. Finally, a possible application of the proposed control law to
spacecraft formation flying with circular and near-circular reference orbit is illustrated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, the coordination problem of multi-
agent systemshas been considerably studied due to its broad appli-
cations in such areas as spacecraft formation flying and sampling,
distributed sensor networks, and automated highway systems, to
name just a few [1–3]. One critical issue arising from multi-agent
systems is to develop control laws that enable all agents to reach a
desired formation, which is known as the formation problem.

Consensus algorithms, as an interesting topic of the coordi-
nation control, can be applied to tackle formation problems by
appropriately choosing information states on which consensus
is reached [4]. Consensus of multi-agent systems with various
dynamics has been well studied over the recent decades. Early
seminal works for systems with first-order dynamics have been
launched by Olfati-Saber andMurray [5], and Ren and Beard [6], to
name a few. Further, in [7,8], consensus for systems with second-
order dynamics and high-order integrator dynamics has also been
extensively investigated. Nevertheless, most actual multi-agent
systems have more complex physical dynamics. Motivated by this
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observation, consensus for systems with general linear dynam-
ics also receives dramatic attention. Corresponding results can be
found in [9–12]. Besides, consensus for multiple Euler–Lagrange
systems and nonlinear systems is investigated in [13,14], respec-
tively. To sumup, a common feature in theworksmentioned above
is that the desired consensus or formation is achieved when the
time variable tends to infinity. Nevertheless, in many practical ap-
plications, it is more desirable for systems to achieve consensus or
formation with a fast convergence rate.

As an important performance indicator of consensus protocols,
convergence rate is a hot research topic in the area of consen-
sus problems. For the above mentioned asymptotic control laws,
the convergence rate is at best exponential with infinite settling
time [15]. Finite-time consensus algorithms, by contrast, are more
desirable in real practice. Besides a faster convergence rate, the
closed-loop systems with finite-time control laws usually demon-
strate better disturbance rejection properties [16]. Finite-time
consensus problems for multi-agent systems are first introduced
in [17]. Then, several kinds of finite-time consensus protocols
have been developed for systems with first-order dynamics in [18,
19]. In particular, the finite-time algorithms are developed to
deal with the time-invariant and time-variant formation problems
in [19]. Extensions to the second-order multi-agent systems are
also studied in [15,20–22]. In [23], the consensus problems for
systems with multiple second-order integrators and coupled har-
monic oscillators are addressed. Furthermore, the finite-time con-
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sensus for systems with multiple rigid bodies is also investi-
gated by many researchers. Corresponding results can be found in
[24–27].

This paper studies the finite-time formation problem of multi-
agent systems with general linear dynamics, which may also
be considered as the linearized model of a nonlinear network.
A new framework is introduced, which converts the finite-
time formation problem of multi-agent systems into the motion
planning problem. Then, based on Pontryagin maximum principle,
an optimal control law is proposed for the multi-agent systems to
achieve the desired formation in finite time. The contributions of
this paper are three-fold. First, it is the first time that the finite-
time formation control law is proposed for systems with general
linear dynamics, as far as we know. Compared with the case
of first-order and second-order dynamics, general linear systems
are more common in practical applications. Second, unlike the
settling time conservatively estimated according to the designed
Lyapunov function, controller parameters, and the information of
the communication topology [23,21], in this paper, the settling
time can be precisely specified in advance according to task
requirements, which is more meaningful and is consistent with
practical needs. Last but not the least, the proposed control laws
are applied to spacecraft formation flying with circular and near-
circular reference orbit. With such control laws, the specified
formation is achieved in finite time, and simultaneously, the entire
energy expenditure is minimized, which is crucial for spacecraft
with limited fuel.

The remaining part of this paper is organized as follows. The
problem formulation is given in Section 2. Main theoretical results
are provided in Section 3. In Section 4, an application of the
proposed control laws to spacecraft formation flying is reported
to illustrate the theoretical results. Concluding remarks are finally
given in Section 5.

2. Problem formulation

Consider a group of N agents with general linear dynamics. The
dynamics of the ith agent is described by
ẋi = Axi + Bui,

xi(t0) = x0i , i = 1, . . . ,N, (1)
where xi ∈ Rn is the state, ui ∈ Rm its control input, and t0 its
initial time. A and B are constant real matrices with compatible
dimensions.

Now for the given initial states x0i , i = 1, . . . ,N , and forma-
tion configurations Di ∈ Rn, i = 1, . . . ,N − 1, determined by
formation tasks, the objective of this paper is to find control inputs
ui, i = 1, . . . ,N , such that
x1(tf ) − xi(tf ) = Di−1, i = 2, . . . ,N, (2)
where tf > t0 is the terminal timewhich is given by formation task
in advance, meanwhile, to minimize the following cost function:

J =
1
2

 tf

t0

N
i=1


ui

T (t)ui(t)

dt. (3)

The above problem is referred to as finite-time optimal formation
control. When Di = 0, i = 1, . . . ,N − 1, the corresponding prob-
lem is referred to as finite-time optimal consensus control. Note that
the latter is the special case of the former. Thus, we shall focus on
the formation control problem.

Remark 1. Generally, formation configurations are given by
xi(tf ) − xj(tf ) = Dij, i, j = 1, . . . ,N . For such formation config-
urations, there are some redundancies. For example, for the for-
mation configurations {D12,D13,D23}, theremust exist the relation
D12 − D13 = D32. Remove these redundancies, the formation con-
figurations considered in this paper are equivalent to general ones.

3. Main results

The problem of finite-time optimal formation control is an
optimal control problem. Therefore, the next task is to solve the
corresponding optimal control problem.

In order to using Pontryagin maximum principle [28], the
Hamiltonian for this problem can be constructed as follows:

H = −
1
2

N
i=1

ui(t)Tui(t) +

N
i=1

pTi

Axi + Bui


, (4)

where pi ∈ Rn is the co-state (Lagrangian multiplier). Then, the
corresponding Hamiltonian system can be written as

ẋi =
∂H
∂pi

= Axi + Bui, (5)

ṗi = −
∂H
∂xi

= −ATpi, i = 1, . . . ,N. (6)

According to Pontryagin maximum principle, the optimal control
ui satisfies the necessary condition that

∂H
∂ui

= −ui + BTpi = 0, i = 1, . . . ,N. (7)

Since these equations have the unique solutions, the above
condition is also sufficient. Then, it follows from (7) that

ui = BTpi, i = 1, . . . ,N. (8)

Let x = (xT1, . . . , x
T
N)T , p = (pT1, . . . , p

T
N)T and u = (uT

1, . . . , u
T
N)T .

Then, the Hamiltonian system (5), (6) and the control (8) can be
rewritten in a matrix form as

ẋ = (IN ⊗ A)x + (IN ⊗ B)u, (9)

ṗ = −(IN ⊗ AT )p, (10)

u = (IN ⊗ BT )p. (11)

Similarly, it follows from the given formation configurations (2)
that
1N−1 −IN−1


⊗ In · x(tf ) = D, (12)

where 1N−1 denotes the column vector with all entries equal to
one, and D = (DT

1, . . . ,D
T
N−1)

T . Substituting (11) into Hamiltonian
system (9), (10) gives
ẋ
ṗ


=


IN ⊗ A IN ⊗ BBT

0 −(IN ⊗ AT )

 
x
p


. (13)

By integrating the above equations from t0 to t , one gets
x(t)
p(t)


= exp


(t − t0)


IN ⊗ A IN ⊗ BBT

0 −(IN ⊗ AT )

 
x0
p0


(14)

where x0 = (x01
T
, . . . , x0N

T
)T and p0 ∈ RNn is the initial value for p.

Thus, the determination of the optimal control (8) is boiled down
to finding the initial value p0. In order to solve p0, a lemma related
to the transversality condition corresponding to the formation
configurations (2) is given.

Lemma 1. If x1(tf ) − xi(tf ) = Di−1, i = 2, . . . ,N, then

1T
N ⊗ In · p(tf ) = 0. (15)
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