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a b s t r a c t

We give the solution to the minimum-energy control problem for linear stochastic systems. The problem
is as follows: given an exactly controllable system, find the control process with the minimum expected
energy that transfers the system from a given initial state to a desired final state. The solution is found in
terms of a certain forward–backward stochastic differential equation of Hamiltonian type.
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1. Introduction

The notion of controllability was introduced by Kalman [1] and
it characterizes the ability of controls to transfer a system from a
given initial state to a desired final state. When the system is com-
pletely controllable, there are many controls that can achieve such
a transfer of the system state. This naturally leads to the problem of
choosing the ‘‘best’’ control that performs this task. Another con-
tribution of Kalman [1] was the solution of this problem for linear
deterministic systems and using the quadratic cost as an optimal-
ity criterion. These kinds of problems are known as the minimum-
energy control problems (see also [2–5]).

There has been a great progress in extending Kalman’s re-
sults from the deterministic to the stochastic settings. Various
different notions of controllability for stochastic systems have
been introduced (see, for example, [6–12]), and the stochastic
linear-quadratic (LQ) regulator continues to be developed in new
stochastic settings (see, for example, [13–20]). On the other hand,
much less progress has been made on the stochastic minimum-
energy control problem. This problem is particularly difficult in
the stochastic setting since the terminal value is a random vari-
able rather than a fixed number. The papers by Klamka [9,21–23]
consider this problem for linear stochastic systems with additive
noise only, and thus do not cover the important class of stochas-
tic systems with multiplicative noise, which appear in many appli-
cations. Examples of stochastic systems with multiplicative noise
can be found in mathematical finance, where the self-financing
portfolio is such a stochastic control system (see, e.g., [24–27]), in
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mechanical systems subject to random parameter variation (see, e.
g., [12]), or in altitude control problems (see, e.g., [28]).

In this paper we formulate and solve the minimum-energy
control problem for linear stochastic systems with multiplicative
noise. The notion of controllability that we adapt is that of
exact controllability, as introduced by Peng [8] (see also [10–12,
29,30]). This notion of controllability is a faithful extension of
Kalman’s notion of complete controllability to stochastic systems.
The difference between these two definitions is that in the case of
exact controllability the terminal state can be a random variable
rather than a fixed number.

The precise formulation of the stochastic minimum-energy
control problem is given in the next section. This is followed by
the proof of solvability for a Hamiltonian system and its relation
with exact controllability. Section 4 contains the solution to the
stochastic minimum energy control problem, which is illustrated
with a couple of examples. As an extension of this result, we give
the solution to the stochastic LQ regulator problem with a fixed
final state in the final section.

2. Problem formulation

Let (Ω, F , (Ft , t ≥ 0),P) be a given complete filtered
probability space on which the scalar standard Brownian motion
(W (t), t ≥ 0) is defined. We assume that Ft is the augmentation
of σ {W (s) : 0 ≤ s ≤ t} by all the P-null sets of F . If ξ : Ω → Rn

is an FT -measurable random variable such that E[|ξ |
2
] < ∞,

we write ξ ∈ L2(Ω, FT ,P;Rn). If f : [0, T ] × Ω → Rn is
an {Ft}t≥0 adapted process and if E

 T
0 |f (t)|2dt < ∞, we write

f (·) ∈ L2F (0, T ;Rn); if f (·) has a.s. continuous sample paths and
E supt∈[0,T ] |f (t)|2 < ∞, we write f (·) ∈ L2F (Ω; C(0, T ;Rn)); if
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f (·) is uniformly bounded (i.e. esssupt∈[0,T ]|f (t)| < ∞), we write
f (·) ∈ L∞(0, T ;Rn).

Consider the linear stochastic control system:dx(t) = [A(t)x(t) + B(t)u(t)]dt
+ [C(t)x(t) + D(t)u(t)]dW (t)

x(0) = x0 ∈ R
n, is given.

(2.1)

We assume that A(·), C(·) ∈ L∞(0, T ;Rn×n), and B(·),D(·) ∈

L∞(0, T ;Rn×m). If the control process u(·) belongs to L2F (0, T ;Rm),
then (2.1) has a unique strong solution x(·) ∈ L2F (Ω; C(0, T ;Rn))
(see, e.g. Theorem 1.6.14 of [19]).

For a given ξ ∈ L2(Ω, FT , P;Rn), we are interested in the
following subset of control processes:

Uξ ≡

u(·) ∈ L2F (0, T ;R

m) : x(T ) = ξ a.s.

.

Minimum-energy control problem. Let R(·) ∈ L∞(0, T ;Rm×m)
be a given symmetric matrix such that R(t) > 0, a.e. t ∈ [0, T ]. For
any given x0 ∈ Rn and ξ ∈ L2(Ω, FT ,P;Rn) find the control process
u(·) ∈ Uξ that minimizes the cost functional

J(u(·)) = E

 T

0
u′(t)R(t)u(t)dt. (2.2)

This is clearly the stochastic version of the Kalman’s minimum
energy control problem. A related problem was considered by
Klamka [9,21–23]. However, Klamka considers linear stochastic
systems with additive noise only, whereas (2.1) has a multiplica-
tive noise. Our approach to solving the stochasticminimum-energy
control problem is different from the operator-theoreticmethod of
Klamka, and is based on a forward–backward stochastic differen-
tial equation of a Hamiltonian type.

In order to ensure that the set Uξ is not empty, we make
some assumptions on the controllability of (2.1). Out of the
many possible notions of controllability for stochastic systems, we
employ the notion of exact controllability as introduced by Peng [8].

Definition 1. System (2.1) is called exactly controllable at time
T > 0 if for any x0 ∈ Rn and ξ ∈ L2(Ω, FT ,P;Rn), there exists at
least one control u(·) ∈ L2F (0, T ;Rm), such that the corresponding
trajectory x(·) satisfies the initial condition x(0) = x0 and the
terminal condition x(T ) = ξ, a.s.

We solve the minimum-energy control problem under the
following two assumptions.

(A1) The system (2.1) is exactly controllable at time T > 0.
(A2) There exists an invertiblematrixM(·) ∈ L∞(0, T ;Rm×m) such

that D(t)M(t) = [I, 0].

Assumption A1 ensures that the set Uξ is not empty. An ex-
ample of a stochastic control system that satisfies this assumption
(as well as assumption A2) is the self-financing portfolio (see, e.g.,
[24,25]) in a market with one riskless and one risky asset, with
equation
dy(t) = [ry(t) + bu(t) − c(t)]dt + σu(t)dW (t)
y(0) = y0 ∈ R, is given,

where y(t) is the portfolio value (investor’s wealth), and the con-
trols c(t) and u(t) represent the consumption rate and the wealth
invested in the risky asset, respectively. One can easily check that
Peng’s [8] necessary and sufficient condition for exact controllabil-
ity is satisfied in this case.

Assumption A2 implies that m ≥ n, i.e. the number of control
inputs to the system is at least as large as the number of the
states of the system. This may appear as a strong assumption
when compared with the minimum-energy control problem of

deterministic systems. However, at least when the matrix D(·) has
continuous coefficients, this assumption is implied by assumption
A1. Indeed, by Proposition 2.1. of [8], a necessary condition for exact
controllability at time T of the system (2.1) is that rankD(t) =

n, ∀t ∈ [0, T ]. Then from the Doležal’s theorem [31], it follows
that there exists the matrix M(·) in assumption A2. In this case, if
assumption A2 is not satisfied, then neither will assumption A1,
and thus the admissible set Uξ will be empty for some ξ and
the minimum-energy control problem will not have a solution.
One can still formulate a minimum-energy control problem with
assumptions A1 and A2 not holding, but then the terminal state
cannot be any ξ ∈ L2(Ω, FT ,P;Rn), but must be restricted to
some subset of L2(Ω, FT ,P;Rn). In this paper, we focus only
on the case when ξ can be any random variable from the set
L2(Ω, FT ,P;Rn).

We now reformulate the minimum-energy control problem in
a more convenient form. Let the processes z(·) ∈ L2F (0, T ;Rn) and
v(·) ∈ L2F (0, T ;Rm−n) be such that

u(t) = M(t)

z(t)
v(t)


. (2.3)

Let thematricesG(·) ∈ L∞(0, T ;Rn×n), F(·) ∈ L∞(0, T ;Rn×(m−n)),
H1(·) ∈ L∞(0, T ;Rn×n),H2(·) ∈ L∞(0, T ;Rn×(m−n)),H3(·) ∈

L∞(0, T ;R(m−n)2), be such that

B(t)M(t) =

G(t) F(t)


,

M ′(t)R(t)M(t) =


H1(t) H2(t)
H ′

2(t) H3(t)


.

(2.4)

Due to the symmetric nature of the matrix R(·), the matrices
H1(·) and H3(·) are also symmetric. Moreover, due to the positive
definiteness of R(·) and the Schur’s lemma, it holds that
H3(t) > 0, a.e. t ∈ [0, T ],

H1(t) − H ′

2(t)H
−1
3 (t)H2(t) > 0, a.e. t ∈ [0, T ].

Eq. (2.1) and the cost functional (2.2) can now be written asdx(t) = [A(t)x(t) + F(t)v(t) + G(t)z(t)]dt
+ [C(t)x(t) + z(t)]dW (t),

x(0) = x0 ∈ R
n, is given,

(2.5)

J(v(·), z(·)) = E

 T

0
[z ′(t)H1(t)z(t) + 2v′(t)H ′

2(t)z(t)

+ v′(t)H3(t)v(t)]dt. (2.6)
To each element of the set Uξ it corresponds a pair of processes

(v(·), z(·)) from the set
Aξ ≡


v(·) ∈ L2F (0, T ;R

m−n), z(·) ∈ L2F (0, T ;R
n) :

x(T ) = ξ a.s.} .

In this reformulation, the minimum-energy control problem is:
min

(v(·),z(·))∈Aξ

J(v(·), z(·)),

s.t. (2.5).
(2.7)

Before we proceed to its solution, let us state a useful necessary
and sufficient condition for the exact controllability of (2.5). It is a
slightmodification of the result in [29], andwe thus omit the proof.

Proposition 1. Let E(·) ∈ L∞(0, T ;Rm×m) be any symmetricmatrix
such that E(t) > 0, a.e. t ∈ [0, T ]. Also let Φ(·) be the unique
solution to the equation
dΦ(t) = −Φ(t)[A(t) − G(t)C(t)]dt − Φ(t)G(t)dW (t),
Φ(0) = I.

The system (2.5) is exactly controllable at time T if and only if

rank

E

 T

0
Φ(t)F(t)E(t)F ′(t)Φ ′(t)dt


= n. (2.8)
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