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a b s t r a c t

In this paper, we consider the stability analysis of large-scale distributed networked control systemswith
random communication delays. The stability analysis is performed in the switched system framework,
particularly as theMarkov jump linear system. There have been considerable research on stability analysis
of the Markov jump systems. However, these methods are not applicable to large-scale systems because
large numbers of subsystems result in extremely large number of switching modes. To circumvent this
scalability issue, we propose a new reduced mode model for stability analysis, which is computationally
scalable. We also consider the case in which the transition probabilities for the Markov jump process
contain uncertainties. We provide a new method that estimates bounds for uncertain Markov transition
probability matrix to guarantee the system stability. Numerical example verifies the computational
efficiency of the proposed methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A networked control system (NCS) is a system that is controlled
over a communication network. Recently, NCSs have attracted con-
siderable research interest due to emerging networked control
applications. For example, NCSs are broadly used in applications
including traffic monitoring, networked autonomous mobile
agents, chemical plants, sensor networks, and distributed software
systems in cloud computing architectures. Due to the communica-
tionnetwork, communicationdelays or communication lossesmay
occur, resulting in performance degradation or even instability.
Therefore, it has led various researchers to analyze NCSs associated
with communication delays [1–8]. Particularly in [6], the NCS with
communication delayswas analyzed by adopting the switched sys-
tem [7–11], which refers to the dynamical system consists of a
family of subsystems and a switching logic governing switching
between subsystems.

In this paper, we study large-scale distributed networked con-
trol system (DNCS), which denotes NCS with a large number of
spatially distributed subsystems (or agents). For such large-scale
systems, our primary goal is to analyze system stability when ran-
dom communication delays exist. Typically, the system behavior
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with random communication delays have been widely modeled as
Markov jump linear system (MJLS) [6,12–16] where the switching
sequence is governed by a Markovian process. Since stability has
been one of the major concerns, considerable effort has been on
stability analysis of MJLS [17,10,18–20]. However, these results are
only applicable to the systems with a small number of switching
modes. Large-scale DNCSs, in which we are particularly interested,
give rise to an extremely large number of switching modes. Thus,
previous conditions developed for the stability analysis of MJLSs
cannot be evaluated for large-scale DNCSs as they are not compu-
tationally tractable. Although the literature [21] recently investi-
gated the switched system that circumvents computation issues
associated with a large number of switching modes, it is devel-
oped for independent and identically distributed (i.i.d.) switching.
We considerMarkovian switching in this paper. In addition, we are
also interested in large-scale DNCSs where the transition probabil-
ities are inaccurately known [20,22,23]. This can happen because
in practice it is difficult to accurately estimate the Markov tran-
sition probability matrix that models the random communication
delays.

This paper provides two key contributions to analyze the sta-
bility of large-scale DNCSs with random communication delays.
Firstly, we guarantee the mean square stability of such systems
by introducing a reduced mode model. We prove that the mean
square stability for individual switched system implies a neces-
sary and sufficient stability condition for the entire DNCS. This
drastically reduces the number of modes necessary for analysis.
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Secondly, we present a newmethod to estimate the bound for un-
certainMarkov transition probability matrix, in order to guarantee
the system stability. These results enable us to analyze large-scale
systems in a computationally tractable manner.

Rest of this paper is organized as follows. We introduce the
problem for the large-scale DNCS in Section 2. Section 3 presents
the switched system framework for the stability analysis with
communication delays. In Section 4, we propose the reduced
mode model to efficiently analyze stability. Section 5 quantifies
the stability region and bounds for uncertain Markov transition
probability matrix. This is followed by the application of the
proposed method to an example system in Section 6, and we
conclude the paper with Section 7.

Notation. The set of real numbers is denoted byR. The symbols∥·∥

and ∥ · ∥∞ stand for the Euclidean and infinity norm, respectively.
The symbol #(·) denotes the cardinality—the total number of
elements in the given set. In addition, the symbols tr(·), ρ(·), ⊗,
and diag(·) represent trace operator, spectral radius, Kronecker
product, and block diagonal matrix operator, respectively.

2. Problem formulation

2.1. Distributed networked control system with no delays

Consider a discrete-time dynamics of each agent in the DNCS,
given by:

xi(k + 1) =


j∈Ni

Aijxj(k), i = 1, 2, . . . ,N, (1)

where k is a discrete-time index, N is the total number of agents
(subsystems), xi ∈ Rn is a state for the ith agent, Ni is a set of
neighbors for xi including the agent xi itself, and Aij ∈ Rn×n is a
time-invariant system matrix that represents the linear intercon-
nections between agents. Note that we have Aij = 0 if there is no
interconnection between the agents i and j.

To represent the entire systems dynamics, we define the state
x(k) ∈ RNn×Nn as x(k) , [x1(k)⊤, x2(k)⊤, . . . , xN(k)⊤]

⊤. Then, the
system dynamics of the DNCS is given as

x(k + 1) = Ax(k), (2)

with the following definition for the matrix A ∈ RNn×Nn

A ,


A11 A12 A13 · · · A1N
A21 A22 A23 · · · A2N
A31 A32 A33 · · · A3N
...

...
...

. . .
...

AN1 AN2 AN3 · · · ANN

 ,

Aij =


0, if no connection between the agents i and j,
Aij, otherwise.

For the discrete-time system in (2), it is well known that the
system is stable if and only if the condition ρ(A) < 1 is satisfied.
Throughout the paperwe assume that the systemwithout commu-
nication delays, defined in (2), is stable. Then, we address stability
in the presence of random communication delays. We remind the
reader that N is very large.

2.2. DNCS with communication delays

Often, network communication between agents encounter time
delays or packet losses while sending and receiving data. We
denote the symbol τ as randomcommunication delays and assume
that τ has a discrete value bounded by 0 ≤ τ ≤ τd < ∞, where
τd is a finite-valued maximum delay. Then, the dynamics for the

agent i with communication delays can be expressed as:

xi(k + 1) =


j∈Ni

Aijxj(k∗), i = 1, 2, . . . ,N, (3)

where k∗ , k − τ . Note that we have no communication delays
when i = j because there is no communication in this case.

The random communication delay, represented by the term k∗,
forms a stochastic process. To analyze the stability of the DNCS,
we define an augmented state X(k) as X(k) , [x(k)⊤, x(k −

1)⊤, . . . , x(k − τd)
⊤
]
⊤

∈ RNnq×Nnq, where q , τd + 1. Then, the
dynamics for the entire system is given by

X(k + 1) = W (k)X(k), (4)

where W (k) ,


Ã1(k) Ã2(k) · · · Ãq−1(k) Ãq(k)

I 0 · · · 0 0
0 I · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · I 0

 ∈ RNnq×Nnq,

the matrix I denotes an identity matrix with proper dimensions,
and the time-varying matrices Ãj(k) ∈ RNn×Nn, j = 1, 2, . . . , q,
model the randomness in the communication delays between
neighboring agents.

3. Switched system approach

Without loss of generality, the dynamics of the large-scale
DNCS with communication delays in (4) can be transformed into
a switched system framework as follows:

x(k + 1) = Wσ(k)x(k), σ (k) ∈ {1, 2, . . . ,m}, (5)

where Wσ(k) is the time-invariant matrix, representing commu-
nication delays in agents, {σ(k)} is the switching sequence, and
m is the total number of switching modes. When the switch-
ing sequence {σ(k)} is stochastic, (5) is referred to as a stochas-
tic switched linear system or a stochastic jump linear system,
according to the literature [7]. For the stochastic switched lin-
ear system, the switching sequence {σ(k)} is governed by the
mode-occupation switching probability π(k) = [π1(k), π2(k),
. . . , πm(k)], where πi is a fraction number, satisfying

m
i=1 πi = 1

and 0 ≤ πi ≤ 1, ∀i. In this case, each πi denotes the modal
probability corresponding to each mode dynamics Wi. In order to
properly describe the behavior of random communication delays,
it is necessary to adopt a certain switching logic, which is used to
update the switching probability π(k). For this purpose, the MJLS
framework has been widely employed [12–16]. Thus, wemake the
following assumption in our analysis.

• Assumption: Consider the stochastic jump linear system (5)
with the switching probability π(k) = [π1(k), π2(k), . . . ,
πm(k)]. Then, π(k) is updated by the Markovian process given
byπ(k+1) = π(k)P , where P ∈ Rm×m is theMarkov transition
probability matrix.

Since the MJLS is a family of the stochastic switched linear
system, various stability notions can be defined [10]. In this paper,
we will consider the mean square stability condition, defined
below.

Definition 3.1 (Definition 1.1 in [11]). The MJLS is said to be mean
square stable if for any initial condition x0 and arbitrary initial
probability distribution π(0), limk→∞ E


∥x(k, x0)∥2


= 0.

The total number of switching modes m depends on the size q
and N . Since the communication delays take place independently
while receiving and sending the data for each agent,m is calculated
by counting all possible scenarios to distribute everymatrices Aij ∈

Rn×n for i ≠ j in the block matrix A ∈ RNn×Nn given in (2), into
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