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The extended state observer (ESO) is a key part of the active disturbance rejection control approach, a
new control strategy in dealing with large uncertainty. In this paper, a nonlinear ESO is designed for
a kind of lower triangular nonlinear systems with large uncertainty. The uncertainty may come from
unmodeled system dynamics and external disturbance. We first investigate a nonlinear ESO with high
constant gain and present a practical convergence. Two types of ESO are constructed with explicit error

estimations. Secondly, a time varying gain ESO is proposed for reducing peaking value near the initial
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time caused by constant high gain approach. The numerical simulations are presented to show visually
the peaking value reduction. The mechanism of peaking value reduction by time varying gain approach is

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The extended state observer (ESO) is the most important part
of the active disturbance rejection control (ADRC), a new control
strategy proposed by Han [ 1] in dealing with the systems with large
uncertainty. The key idea of ADRC is that the “total disturbance”
which contains the unmolded system dynamics, external distur-
bance, and even the error in control coefficients away from nom-
inal values is considered as an extended state and is estimated, in
real time, through ESO. The “total disturbance” is then canceled in
the feedback loop by its estimation. This estimation/cancellation
nature of ADRC makes it capable of eliminating the uncertainty
before it causes negative effect to control plant and the control
energy can thereupon be saved significantly in engineering ap-
plications [2]. In the past two decades, numerous engineering
applications have witnessed the success and powerfulness of
ADRC, for which we refer to [3-6], name just a few.
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The idea of ESO can be traced back to [7] where the following
nonlinear system with control matched uncertainty is considered.

x1(t) = x2(b),

X2 (t) = x3(b),

: (1.1)
Xp () = f(£,%1(0), x2(8), ..., X, (0)) + w(t) + u(D),

() = x(b),

where f : R™! — R is usually unknown, w(t) is an external
disturbance, y(t) = x;(t) is the output, and u(t) is the control
input. An ESO for system (1.1) is constructed in [7] as follows:

x1(t) = Ra(6) — a1 €1 (8) — (1)),

) (1.2)
X (t) = Xng1 () — aplnRq (£) — y(0)) 4 u(t),
52n+1 (t) = _an+l£n+1 (5}1 (t) - y([)),

where X;(t) (i =1, 2, ..., n) are used to estimate x;(t) and X, 1 (t)

is used to estimate the “total disturbance”: x, 1 (t) £ f(t, -)+w(t).
The nonlinear functions ¢;(-) are gain functions and ¢; are tuning
parameters. The multiple choice of tuning parameters has been
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changed in [8] by constant high gain ¢ ~! with linear gain functions
£;(-) as follows:

() = Ro(t) + %(y(r) — (1)),

. . a, . (1.3)
2al0) = Rua (O + ZH0/0) = R(0) + u(@),
huia (0 = TGO = 81 (0).

The ESO with linear gain functions is said to be linear ESO
(LESO). A similar idea of LESO (1.3) also can be founded in [9].
However, although the LESO (1.3) takes its advantage of simple
turning parameter, it also brings the peaking value problem, slow
convergence, and many other problems contrast to fast tracking
and small peaking value indicated numerically in [ 1] for nonlinear
ESO (1.2). By taking these points into account, we propose in [10]
a nonlinear ESO with constant high gain tuning parameter, which
covers the LESO (1.3) as a special case.

We emphasize that ESO is an extension of state observer which
estimates only the state by the output of system. We refer a few of
them to [11-15] and the references therein.

In this paper, we are concerned with the convergence of
nonlinear ESO further for the following lower triangular system
which covers system (1.1) as its special case:

x1(t) = x2(t) + g1 (u(t), x1(t)),
xo(t) = x3(t) + & (), x1(£), X(t)),
. (1.4)

Fa(t) = F(£.X(0), w(b)) + gu(u(t), x(8)),
¥ =x1(t),

where gi(-) € C(R™™, R) is known nonlinear function, f(t,-) €
C(R™*+1 R) is usually an unknown nonlinear function, x(t) =
x1(t), xo(t), ..., X,(t)) is the state of system, u € R™ is the
input (control), y(t) = x;(t) is the output (measurement), and
w e C (EJr, R) is the external disturbance. The objective of this
paper is to design a nonlinear ESO for system (1.4) to estimate both
state x(t) and “total disturbance” defined by the extended state of
system (1.4) as follows:

Xng1(t) = f(E x(0), (D). (1.5)

It is noted that the state observer for lower triangular systems
with or without uncertainty has been studied by many researchers
and some of them can be found in [11,12,16]. However, in
these works, the uncertainty is not estimated. Our study on the
uncertainty estimation for quite general f (¢, -) and g;(-) in system
(1.4) consists of the major contribution of the paper.

We proceed as follows. In next section, we propose a general-
ized nonlinear constant high gain ESO. The proof for the practical
convergence is presented. We exemplify analytically the proposed
ESO by two classes of ESO with an explicit estimation of conver-
gence. In Section 3, we propose a time varying gain nonlinear ESO
for system (1.4). This is motivated mainly by the problem caused
by the constant high gain: there happens often the notorious peak-
ing value problem in the initial stage. The problem can be solved
in some extend by the time varying gain approach. A brief anal-
ysis is presented for occurrence of peaking value problem behind.
This consists of the second major contribution of the present paper.
Section 4 presents some numerical simulations for illustration. In
particular, the numerical results demonstrate visually the peaking
value reduction by the time varying gain approach.

2. Constant high gain ESO

In this section, we design a constant high gain ESO to recover
both state of system (1.4) and its extended state (1.5), which reads
as follows:

' 1
X(t) =X(0) + rnf]hl(rn()’(f) —X1(1)))
+g1(u, X1 (t)),

ESO: {: (2.1

2al0) = Rasa(0) + (" (0) — (D))
. +gn(u7 X1(t)s LR xﬂ(t))v
Xnp1(0) = thyp (" (0) — 21(1))),

where r is the constant high gain parameter and h; € C(R, R),
i=1,2,...,n+ 1the design functions.

To get the convergence of ESO (2.1), some mathematical
assumptions are required. The following Assumptions A1 and A2
are on g;(-) and f (¢, -) in system (1.4).

Assumption Al. g; : R — R satisfies
]

, Vi — o) I,

lgi(u, vy, ..., v) —gu, vy, ..
< rWll(vs =y, ...

where6; € (n—i)/(n+1—-1), 1], i=1,2,...,n.

I € C(R™, R), (2.2)

The condition (2.2) means that g;(-),i = 1,2..., n are Holder
continuous. For triangular systems, the widely assumed Lipschitz
continuity is just a special case of the Hélder continuity with the
exponents ; = 1. Systems with appropriate Holder continuous
functions such as weighted homogeneous functions have merits
of finite-time stable, and these kinds of functions can be used for
feedback control design, see, for instance, [17].

Assumption A2. f € C'(R"™2, R) satisfies

of (£, x, w af (t, x, w of (£, x, w

f ( ) n f ( ) " f ( )
ot 0X; ow

[f(E, x, w)| + ’
< o (%) + o (w),

wherei=1,2,...,n,@; € CR,R"), @, € C(R,R") are two
known functions.

The succeeding Assumption A3 is on the control input u(t) and
external disturbance w(t).

Assumption A3. sup;c(g o) (|w(®)| + [w(®)| + lu®)]) < oo.

For many practical systems, since the control is bounded,
Assumption A3 is reasonable when ESO is used in fault diagnosis.
For ESO based feedback control, the boundedness of control should
be analyzed separately. However if the I" in (2.2) is constant, then
the assumption of boundedness for control can be removed.

Assumption A4 is on functions h;(-) in ESO (2.1). It gives a
principle of choosing h;(-).

Assumption A4. All h; € C(R, R) satisfy the following Lyapunov
conditions: there exist positive constants R, N > 0, and con-
tinuous, radially unbounded, positive definite functions V, W e
C(R™!, R*) such that

(1) S0, i1 — i) 222 ()P < W), Vo =

v dvp
(V1, V2, -+ Upp1) € RMTL,
i |9V 8V
@ maxa {10l 5]} < Nwo, [2382] <

NW(©), v e R™ |jv|| = R.
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