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a b s t r a c t

The design of a Stratonovich noise feedback controller with support in an arbitrary open subset O0 of O
is described. This exponentially stabilizes in probability, that is with probability one, the Oseen–Stokes
systems in a domain O ⊂ Rd, d = 2, 3. This completes the stabilization results from the author’s work
Barbu (2011) [3] which is concerned with design of an Ito noise stabilizing controller.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and statement of the problem

This work is concerned with the internal stabilization via
Stratonovich noise feedback controller of theOseen–Stokes system

∂X
∂t

− ν∆X + (f · ∇)X + (X · ∇)g = ∇p in (0,∞)× O,

∇ · X = 0 in (0,∞)× O,

X(0, ξ) = x(ξ), ξ ∈ O, X = 0 on (0,∞)× ∂O.

(1)

Here, O is an open and bounded subset of Rd, d = 2, 3, with
smooth boundary ∂O, and f , g ∈ C2(O; Rd) are given functions.
In the special case g ≡ 0, system (1) describes the dynamics of a
fluid Stokes flow with partial inclusion of convection acceleration
(f · ∇)X (X is the velocity field). The same equation describes
the disturbance flow induced by a moving body with velocity f
through the fluid. We should mention also that in the special case
f ≡ g ≡ Xe, where Xe is the equilibrium (steady-state) solution of
the Navier–Stokes equation,

∂X
∂t

− ν∆X + (X · ∇)X = ∇p + fe,

∇ · X = 0, X |∂O = 0,
(2)

and fe ∈ C(O; Rd), system (1) is the linearization of (2) around Xe.
In this way, the stabilization of (1) can be interpreted as the first
order stabilization procedure of steady-state Navier–Stokes flows.
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Our aim here is to design a stochastic feedback controller of the
form

u = 1O0

M−
k=1

Rk(X) ◦ β̇k, Rk ∈ L((L2(O))d), (3)

which stabilizes in probability system (1) and has support in an
open subdomain O0 of O.

Here, {βk}
M
k=1 is a system of mutually independent Brownian

motions in a probability space {Ω,F , P} with filtration {Ft}t>0
while the corresponding closed loop system

dX − ν∆X dt + (f · ∇)X dt + (X · ∇)g dt

= 1O0

M−
k=1

Rk(X) ◦ dβk + ∇p dt (4)

X(0) = x

is taken in the Stratonovich sense (see, e.g., [1]) and this is the
significance of the symbol Rk(X) ◦ β̇k in the expression of the
noise controller (3). In the following, the terminology Stratonovich
feedback controller or Ito feedback controller refer to the sense
in which the corresponding stochastic equation (4) is considered:
in the Stratonovich sense or, respectively, the Ito sense. We have
denoted by 1O0 the characteristic function of the open set O0 ⊂ O.

In [2–5], the author has designed similar stabilizable Ito
noise controllers for Eq. (1) and related Navier–Stokes equations.
However, it should be said that, with respect to Ito noise
controllers, the Stratonovich feedback controller (3) has the
advantage of being stable with respect to smooth changes β̇εk
of the noise β̇k, and this fact is crucial not only from the
conceptual point of view, but also for numerical simulations
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and practical implementation into system (1) of the random
stabilizable feedback controller

uε(t) = 1O0

M−
k=1

Rk(X(t))β̇εk (t),

where β̇εk is a smooth approximation of βεk . If instead (3) we
take u to be an Ito stabilizable feedback controller, then the
corresponding Ito stochastic closed loop equation is convergent for
ε → 0 to a Stratonovich equation of the form (4) which might be
unstable because the stabilization effect of the noise controller is
given by the Ito’s formula which is valid for Ito stochastic equation
only. Thus, for numerical implementations of a stabilizanble noise
feedback controller u it is essential that it is of Stratonovich type.
It should be said, however, that the option for an Ito stabilizable
noise controller, as in [2–5], or a Stratonovich one, as in this work,
is a function of the specific technique used to insert such a noise
controller into the system (1), i.e. by direct simulation or by a
numerical approximation procedure.

As regards the literature on stabilization of linear differential
systems by Stratonovich noise, the pioneering works [6,7] should
be primarily cited. For linear PDEs, this procedure was developed
in [8,9] which are related to this work. For general results on
internal stabilization of Navier–Stokes systems with deterministic
feedback controllers, we refer to [10]. (See also [11] for noise
stabilization effect in a different nonlinear PDE context.)

2. The noise stabilizing feedback controller

Consider the standard space of free divergence vectors H =

{y ∈ (L2(O))d; ∇ · y = 0 in O, y · n = 0 on ∂O} and denote
by A0 : D(A0) ⊂ H → H the realization of the Oseen–Stokes
operator in this space, that is,

A0y = P(−ν∆y + (f · ∇)y + (y · ∇)g), y ∈ D(A0), (5)

where D(A0) = H ∩ (H2(O))d ∩ (H1
0 (O))

d. Here, P is the Leray
projector on H , and H2(O),H1

0 (O) are standard Sobolev spaces
on O. In the following, it will be more convenient to represent
Eq. (1) in the complex Hilbert space H = H + iH by extending
A0 to A : D(A) ⊂ H → H via the standard procedure,
A(x + iy) = A0x + iA0y. The operator A has a countable set of
eigenvalues {λj}

∞

j=1 (eventually complex) with the corresponding
eigenvectors ϕj. Denote by A∗ the adjoint of A with eigenvalues λj
and eigenvectors ϕ∗

j . Each eigenvalue is repeated in the following
according to its algebraic multiplicity mj. Normalizing the system
{ϕj}

∞

j=1, we see that

|∇ϕj|
2
H = λj −


(f · ∇)ϕj + (ϕj · ∇)g, ϕj


, ∀j,

and since, by the Fredholm–Riesz theory, |λj| → +∞ as j → ∞,
we infer that Reλj → +∞ as j → ∞.We denote byN theminimal
number of eigenvalues λj for which

Re λj > 0 for j ≥ N, λ1 + λ2 + · · · + λN > 0. (6)

(In the above sequence, each λj is taken together its conjugate λj
and, clearly, there is such a natural number N .)

Set Xu = lin span{ϕj}
N
j=1 and denote by Xs the algebraic

complement of Xu in X. It is well known that Xu and Xs are both
invariant for A and, if we set

Au = A|Xu , As = A|Xs ,

wehave for their spectraσ(Au) = {λj}
N
j=1, σ (As) = {λj}

∞

j=N+1 and,
since −As is the generator of an analytic C-semigroup e−Ast in Xs,
we have

‖e−Ast‖L(H) ≤ C exp(−Re λN+1t), t ≥ 0, (7)

(see, e.g., [2, p. 14]). In the following, we shall assume that
(i) All the eigenvalues {λj}

N
j=1 are semisimple.

This means that the algebraic multiplicity of each λj, j =

1, . . . ,N , coincides with its geometric multiplicity or, in other
words, the finite-dimensional operator (matrix) Au can be
diagonalized. As we will see later on, this assumption is not
essentially necessary but it simplifies the construction of the
stabilizing controller because it reduces the unstable part of the
system to a diagonal finite-dimensional differential system. In
particular, it follows by (i) that we can choose the dual systems
{ϕj} and {ϕ∗

j } in such a way that

⟨ϕi, ϕ
∗

j ⟩ = δij, i, j = 1, . . . ,N. (8)

(Here, and everywhere in the following, ⟨·, ·⟩ stands for the scalar
product inH andH . By | · |H and | · |H we denote the corresponding
norms.)

We note that the uncontrolled Oseen–Stokes system (1) can be
rewritten in the space H as

dX
dt

+ AX = 0, t ≥ 0, X(0) = x, (9)

and setting Xu =
∑N

j=1 yjϕj, Xs = (I − PN)X , where PN is the
algebraic projector on Xu, we have

dXu

dt
+ AuXu = 0, Xu(0) = PNx, (10)

dXs

dt
+ AsXs = 0, Xs(0) = (I − PN)x. (11)

We set Au =

⟨Aϕj, ϕ

∗

k ⟩
N
j,k=1 = diag‖λj‖N

j=1 and so, by (8), we

may rewrite (10) in terms of y =

yj = ⟨Xu, ϕ

∗

j ⟩
N
j=1

as

dy
dt

+ Auy = 0, y(0) =

⟨PNx, ϕ∗

j ⟩
N
j=1
. (12)

Since Tr(−Au) = −λ1−λ2−· · ·−λN < 0, it follows by Theorem 2
in [7] that there is a sequence of skew-symmetricmatrices {Ck

}
M
k=1,

where M = N − 1 such that the solution y to the Stratonovich
stochastic system

dy + Auy dt =

M−
k=1

Cky ◦ dβk, t ≥ 0, (13)

has the property

|y(t)| ≤ C |y(0)|e−γ0t , P-a.s., ∀t > 0, (14)

where γ0 > 0. The matrix Ck is explicitly constructed in [7] and it
will be used below to construct a stabilizable feedback controller
of the form (3). Namely, we set in (3)

Rk(X) =

N−
i,j=1

Ck
ij⟨X, ϕ

∗

j ⟩φi, k = 1, . . . ,M, (15)

where ‖Ck
ij‖

N
i,j=1 = Ck,

φi =

N−
ℓ=1

αiℓϕ
∗

ℓ , i = 1, . . . ,N, (16)

and αiℓ are chosen in such a way that

N−
ℓ=1

αiℓγℓj = δij, i, j = 1, . . . ,N. (17)

Here, γℓj =


O0
ϕ∗

ℓϕ
∗

j dξ and since, by the unique continuation
property (see [2, p. 157]), the eigenfunction system {ϕ∗

j } is linearly
independent on O0, we infer that the matrix ‖γℓj‖

N
ℓ,j=1 is not

singular and, therefore, there is a unique system {αiℓ} which
satisfies (17). Then, by (16), we see that
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