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a b s t r a c t

The paper addresses the obstacle avoidance motion planning problem for ground vehicles operating
in uncertain environments. By resorting to set-theoretic ideas, a receding horizon control algorithm is
proposed for robotsmodelled by linear time-invariant (LTI) systems subject to input and state constraints
and disturbance effects. Sequences of inner ellipsoidal approximations of the exact one-step controllable
sets are pre-computed for all the possible obstacle scenarios and then on-line exploited to determine
the more adequate control action to be applied to the robot in a receding horizon fashion. The resulting
framework guarantees Uniformly Ultimate Boundedness and constraints fulfilment regardless of any
obstacle scenario occurrence.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of motion planning and control for autonomous
mobile vehicles deals with finding appropriate command inputs
such that the resulting vehicle trajectory satisfies the requirements
of a specified task [1]. For most real mobile robotics applications,
a basic requirement is the capability to safely operate in dynamic
and a priori unknown environments [2]. Despite the extensive re-
search, this problem still represents a relevant challenge because
of unavoidable uncertainties in the operating scenario, inherent
deficiencies in perception abilities and computational capabili-
ties of the robot and restrictions on the vehicle mobility due to
nonholonomic kinematic constraints, limited control ranges and
under-actuations, see e.g. [3]. Avoidance of collisions with mov-
ing obstacles is a key component of the safe navigation whose typ-
ical objective is to reach a target through the obstacle-free part
of the environment, see [4,5] and references therein. In this re-
spect, it is well-known thatmethods based on navigation functions
are not capable to properly take care of any physical constraints
(see e.g. the specific schemes for navigation of autonomous ve-
hicles [6,7] and air traffic management [8]) and this represents
a non-negligible drawback because it makes restrictive such ap-
proaches [9].

In particular, during the last decade much attention has been
devoted to exploit the possibility of extending road-map and po-
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tential functions methods to the case of dynamic obstacle sce-
narios [10–14]. In [10] Probabilistic Roadmap Methods (PRM) are
considered with the aim to overcome the assumption of static en-
vironments properly of this class of strategies. A straightforward
and high-demanding solution consists in updating the roadmap af-
ter an obstacle has changed its position. Therefore, the proposed
algorithm creates a robust roadmap in the preprocessing phase
by using the observation that the behaviour of the moving ob-
stacles is often not unconstrained but restricted to pre-specified
areas. In [11], the so-called Partial Motion Planner (PMP) mecha-
nism is designed so that uncertainties arising fromplanningwithin
dynamic environments can be handled. The main idea is to pre-
calculate admissible state trajectories by using the Inevitable Col-
lision States (ICS) framework that, though it is capable to generate
safe paths, is subject to high computational burdens which could
lead to violate the real-time constraints under which the robot
must take a decision. By considering dynamic objects character-
ized by piecewise constant velocities, an explicit kinematic model
of the robot is considered in [12]: the family of feasible trajectories
and their corresponding steering controls are derived in a closed
form. In [13], the path planning problemunder nonholonomic con-
straints is addressed by using the so-called Follow the Gap Method
(FGM). There by calculating a gap array around the robot, the ap-
propriate gap is selected, the best heading vector through the gap
derived and the final angle to the target point computed. Along
similar lines is the contribution in [14] where a hybrid approach
using a-priori knowledge of the environment guarantees that the
autonomous vehicle cannot be trapped in deadlocks.

All these contributions share as a common denominator the
fact that the path following obstacle avoidance problem is par-
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tially tackled: the control unit design is either leaved completely
out (e.g. [13,14]) or it is obtained by considering specific kinematic
vehicle descriptions (see [12]).

Moving from this analysis, we are here interested to con-
sider constrained Receding Horizon Control schemes which are
an extremely appealing methodology for dealing with the obsta-
cle avoidance motion planning problem in virtue of their intrin-
sic capability to generate at each time instant feasible trajectories
that allow to safely reach a given goal, see to cite a few the re-
cent contributions [15–18]. In [15] the dynamic window approach
(DWA) navigation scheme is recast within a continuous time non-
linear model control predictive (MPC) framework by resorting to
the ideas developed in [19]. In particular the algorithm is based
on the jointly use of a model-based optimization scheme and a
convergence-oriented potential field method. Although interest-
ing, the approach suffers of unavoidable high computational bur-
dens mainly due to the MPC phase that it is slightly mitigated by
splitting the dissipative controls into two subsets with piecewise
controls. The authors of [16] consider the collision avoidance as
well as navigation towards the destination using a MPC approach.
The related on-line optimization is solved by means of nonlinear
programming, while a local path planning generator makes use of
the so-called distance and parallax methods. The main handicap
of this method relies on the heavy computational loads pertain-
ing to the computation of the predictive controller action. In this
contribution, this difficulty is attacked by considering a very large
sensing range that allows to have available sufficient time for solv-
ing the underline constrained optimization problem. Along simi-
lar lines is also [17] and the references therein. More relevant for
our purposes, although limited to a single static obstacle configu-
ration, are instead the developments of [18], where algorithms for
the computation of the set of states that can be robustly steered in
a finite number of steps via state feedback control to a given target
set while avoiding pre-specified zones or obstacles are achieved
by exploiting polyhedral algebra concepts. There, it is shown how
such regions are necessary to adequately deal with the obstacle
avoidance problem even if the computational burdens may be-
come prohibitive in some situations, e.g. when the system is sub-
ject to bounded disturbances.

In the sequel, we shall consider the class of dynamic environ-
ments defined as follows:
The obstacle locations on theworking area are known, but at each time
instant it is unpredictable which is the current obstacle configuration.
The consequence of such a formulation is that the resulting set-
up gives rise to a certain degree of uncertainty that if not properly
treated can lead to collisions during the vehicle navigation.

To deal with this problem, we develop a novel discrete-time re-
ceding horizon control (RHC) strategy based on set-theoretic ideas
so that the prescribed saturation and geometric constraints are al-
ways fulfilled despite of any obstacle scenario occurrence. The key
motivation supporting such an approach relies on the capabilities
of the RHC philosophy combined both with set-invariance con-
cepts and the ellipsoidal calculus to guarantee control performance
and computational load savings under constraints satisfaction and
disturbances effect attenuation requirements, see [20].

Then, themain ingredients of the proposed strategy canbe sum-
marized as follows:
• Compute a stabilizing state feedback law and a robust positively

invariant ellipsoidal set centred at the goal location;
• Enlarge the set of initial states that, according to the obstacle

scenario configurations, can be steered to the target in a finite
number of steps;
• At each sampling time, an on-line receding horizon strategy is

obtained by deriving the smallest ellipsoidal set complyingwith
the current obstacle configuration. The control move is com-
puted by minimizing a performance index such that the one-
step ahead state prediction belongs to the successor set.

A relevant feature of this scheme is the capability to ensure that
there exists at each time instant a feasible solution complyingwith

the time-varying obstacle configuration prescriptions. Then, a sec-
ond importantmerit relies on the needed computational resources
that are significantly modest because the command input compu-
tation prescribes at most the solution of a Quadratic Programming
(QP) problem under linear constraints.

Finally, the theoretical results are illustrated bymeans of a sim-
ulation campaign on a point mobile robot model whose navigation
within a planar environment is limited by the occurrence of mov-
ing obstacles.

2. Preliminaries and notations

Throughout the paper, we consider autonomous vehicles de-
scribed by discrete-time LTI systems

x(t + 1) = Φx(t)+ Gu(t)+ Gww(t) (1)

where t ∈ Z+ := {0, 1, . . .}, x(t) ∈ Rn denotes the plant state,
u(t) ∈ Rm the control input and w(t) ∈ W ⊂ Rw, ∀t ∈ Z+, an ex-
ogenous bounded disturbance. Moreover, the model (1) is subject
to the following set-membership state and input constraints:

u(t) ∈ U, ∀t ≥ 0, (2)
x(t) ∈ X, ∀t ≥ 0, (3)

with U, X compact subsets of Rm and Rn, respectively.

Definition 1. A setT ⊆ Rn is robustly positively invariant for (1) if
there exists a control law u(t) ∈ U such that once the closed-loop
solution xCL(t) enters inside that set at any given time t0, it remains
in it for all future instants, i.e. xCL(t0) ∈ T → xCL(t) ∈ T , ∀w(t) ∈
W, ∀t ≥ t0.

Given the system (1), it is possible to determine the sets of states
i-step controllable to T via the following recursion (see [21]):

T0 :=T

Ti :={x ∈ X : ∃ u ∈ U : Φx+ Gu+ Gww ∈ Ti−1,∀w ∈ W},

={x ∈ X : ∃ u ∈ U : Φx+ Gu ∈ T̃i−1}

(4)

where In[·] denotes the inner ellipsoidal approximation, whereas
T̃i−1 := In[Ti−1 ∼ GwW] is defined as In[{x ∈ Ti−1 : x + w ∈
Ti−1, ∀w ∈ GwW}] and ∼ is known as the P-difference opera-
tor [22]. Moreover, T0 is known as the terminal region and Ti is
the set of states that can be steered into Ti−1 using a single control
move.

Definition 2. Let S be a neighbourhood of the origin. The closed-
loop trajectory of (1) is said to be Uniformly Ultimate Bounded in
S if for all µ > 0 there exist T (µ) > 0 and u(t) ∈ U such that, for
every ∥x(0)∥ ≤ µ, xCL(t) ∈ S for all t ≥ T (µ).

Definition 3. Given a setW ⊂ Rn and a point x ∈ Rn, the distance
is defined as:

dist(x,W ) = inf
w∈W
∥x− w∥∗,

where ∗ is any relevant norm.

Definition 4. Given two setsW , R ⊂ Rn the distance is defined as:

dist(W , R) = inf {∥w − r∥∗ | w ∈ W , r ∈ R}.

Definition 5. An oriented graph is an ordered pairG = (V, E) such
that

• V is the vertex set;
• E is a subset of ordered pairs of V known as the edge set, i.e.

E ⊂ {{u, v} | u, v ∈ V} .
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