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a b s t r a c t

In this paper, we present a generalized negative imaginary lemma based on a generalized negative imag-
inary system definition. Then, an algebraic Riccati equation method is given to determine if a system is
negative imaginary. Also, a state feedback control procedure is presented that stabilizes an uncertain sys-
tem and leads to the satisfaction of the negative imaginary property. The controller synthesis procedure
is based on the proposed negative imaginary lemma. Using this procedure, the closed-loop system can be
guaranteed to be robustly stable against any strict negative imaginary uncertainty, such as in the case of
unmodeled spill-over dynamics in a lightly damped flexible structure. A numerical example is presented
to illustrate the usefulness of the results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Negative imaginary (NI) systems theory has had an impor-
tant impact in modeling and controlling flexible structure systems
[1–5] This theory was introduced by Lanzon and Petersen in [1,2]
for the robust control of flexible structures with force actuators
combined with colocated position or acceleration sensors. The NI
property arises in many practical systems. For example, this prop-
erty arises when considering the transfer function from a force ac-
tuator to a corresponding colocated position sensor (for instance,
a piezoelectric sensor) in a lightly damped structure [6,2]. Another
area where the underlying system dynamics are frequently NI is
in nano-positioning systems; see e.g., [7–9,5]. Also, the positive-
position feedback control scheme in [6,10] can be considered us-
ing the NI framework. Furthermore, other control methodologies
in the literature such as integral resonant control (IRC) [11] and res-
onant feedback control [12] fit into the NI framework and their sta-
bility robustness properties can be explained by NI systems theory.

Lanzon and Petersen studied the stability robustness of inter-
connected NI systems in [1,2]. They have shown that a necessary
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and sufficient condition for the internal stability of a positive-
feedback interconnection of an NI system G(s) and a strictly nega-
tive imaginary (SNI) system Ḡ(s) is given by the condition.

λmax(G(0)Ḡ(0)) < 1, (1)

where the notation λmax(·) denotes the maximum eigenvalue of
a matrix with only real eigenvalues. The results provided in [1,2]
have been used in a number of practical applications. For instance,
a positive position feedback control scheme based on the NI sta-
bility result provided in [1,2] is used to design a novel compensa-
tion method for a coupled fuselage-rotor mode of a rotary wing
unmanned aerial vehicle in [13]. In [14,15], the NI stability result is
applied to nanopositioning in an atomic forcemicroscope. An iden-
tification algorithm which enforces an NI constraint is proposed
in [3] for estimatingmodel parameters, followingwhich an integral
resonant controller is designed for damping vibrations in flexible
structures. In addition, it is shown in [16] that the class of linear
systems having NI transfer function matrices is closely related to
the class of linear port Hamiltonian systems. In [5], an IRC scheme
based on the stability results provided in [1,2] is used to design
an active vibration control system for the mitigation of human-
induced vibrations in light-weight civil engineering structures.

In the papers [1,2], the authors consider systems with poles in
the open left half of the complex plane. These results have been
extended in [17] to include NI systems with poles in the closed
left half of the complex plane, except at the origin. Also, further
extensions to NI systems theory include the study of NI controller
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synthesis [18], connections between NI systems analysis and µ-
analysis [19], and conditions for robust stability analysis of mixed
NI and bounded-real classes of uncertainties [20].

An important class of NI systems corresponds to flexible
systems with free body motion. For instance, these systems arise
in areas such as rotating flexible spacecraft [21], rotary cranes [22],
robotics and flexible link manipulators [11,12], and dual-stage
hard disk drives [23,24]. These flexible structure systems with
free body motion lead to dynamical models including poles at the
origin. In the papers [25,26], the notion of NI systemswas extended
to allow for up to two poles at the origin and corresponding
stability results were presented. This extension allows for flexible
structures with free body motion. Also, a negative imaginary
definition for transfer functions which are not necessarily rational
is given in [27].

In this paper, we first consider the generalized definition of NI
systems presented in [26] and provide a corresponding generalized
NI lemma. Also, we present an algebraic Riccati equation (ARE)
method to find if a given system satisfies the generalized NI
property. Then, we use these analysis methods in order to derive
a state feedback controller synthesis method that yields a closed-
loop system which satisfies the generalized NI property. The
robustness of this control strategy follows from the NI stability
results in [25,26]. One advantage of presenting the NI lemma in
the ARE format relates to how simple andwell understood the ARE
is in modern control theory including H2 and H∞ control [28]. The
analytical properties of AREs and efficient numerical algorithms for
solving the AREs have been very well developed [29].

A preliminary conference version of the stabilization result
presented in this paper was presented in [30]. In this paper, we
extend the work in [30] to derive a controller that stabilizes an
uncertain system when full state feedback is available. Unlike the
results in [30], the resulting closed-loop system is asymptotically
stable. Also, we present proofs of the results, which were not
included in [30] and a new illustrative example corresponding to
a practical atomic force microscope (AFM) system is developed in
this paper.

2. Preliminaries

In this section, we present the definition for SNI systems. Also,
we introduce some technical results whichwill be used in deriving
the main results of this paper.

The following defines SNI systems [1]:

Definition 1. A square transfer function matrix G(s) is SNI if the
following conditions are satisfied:
1. G(s) has no pole in Re[s] ≥ 0;
2. For all ω > 0, j (G(jω) − G(jω)∗) > 0.

Now, consider the following LTI system:
ẋ(t) = Ax(t) + Bu(t), (2)
y(t) = Cx(t) + Du(t) (3)
where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m.

The following lemma will be used in deriving an SNI lemma.

Lemma 1 ([31]). Suppose the transfer function matrix G(s) has

a minimal realization


A B
C D


. Also, suppose A has no pure

imaginary eigenvalues for ω0 > 0 and λ ∈ R is not an eigenvalue of
CB+BT CT

2 > 0. Then, λ is an eigenvalue of H(jω0) =
1
2 jω0(G(jω0) −

G(jω0)
∗) if and only if jω0 is an eigenvalue of the matrix

Nλ =


A + BR−1

λ CA BR−1
λ BT

−ATCTR−1
λ CA −AT

− ATCTR−1
λ BT


,

where Rλ = 2λI − CB − BTCT .

Now, consider the following theorem which characterizes the
SNI property based on the spectrum of a corresponding Hamilto-
nian matrix.

Theorem 1. Suppose the transfer function matrix G(s) has a minimal

realization


A B
C D


such that CB + BTCT > 0. Then, G(s) is SNI if

and only if the following conditions are satisfied:

1. A is a Hurwitz matrix, and D = DT ;
2. The Hamiltonian matrix

N0 =


A − BR−1CA −BR−1BT

ATCTR−1CA −AT
+ ATCTR−1BT


has no eigenvalues at s = jω for any ω > 0. Here, R = (CB +

BTCT ).

Proof. Let

H(jω) =
1
2
jω(G(jω) − G(jω)∗).

Suppose that G(s) is SNI. It follows that A is a Hurwitz matrix.
Also, j(G(jω) − G(jω)∗) > 0 for all ω > 0, which implies that
H(jω) > 0 for all ω > 0. Then, λ = 0 is not an eigenvalue of H(jω)

for anyω > 0. It follows from Lemma 1 that jω is not an eigenvalue
of N0 for any ω > 0. Note that N0 is equivalent to Nλ in Lemma 1
with λ = 0.

Conversely, suppose that N0 has no eigenvalues s = jω with
ω > 0 and A is a Hurwitz matrix. It follows from Lemma 1 that
λ = 0 is not an eigenvalue of H(jω) for all ω > 0. Since the eigen-
values of H(jω) are continuous functions of ω, this implies that ei-
ther H(jω) > 0 for all ω > 0 or H(jω) < 0 for all ω > 0. However,
using the fact thatCB+BTCT > 0, it follows that limω→0 H(jω) > 0,
which implies j(G(jω) − G(jω)∗) > 0 for all ω > 0. Hence G(s) is
SNI, since A is a Hurwitz matrix. �

3. Generalized negative imaginary systems

We now recall a generalized definition of NI systems which
allows for free body dynamics.

Definition 2 ([25,26]). A square transfer function matrix G(s) is NI
if the following conditions are satisfied:

1. G(s) has no pole in Re[s] > 0.
2. For all ω > 0 such that s = jω is not a pole of G(s),

j

G(jω) − G(jω)∗


≥ 0. (4)

3. If s = jω0 with ω0 > 0 is a pole of G(s), then it is a simple pole
and the residuematrixK = lims−→jω0(s−jω0)jG(s) is Hermitian
and positive semidefinite.

4. If s = 0 is a pole of G(s), then lims−→0 skG(s) = 0 for all k ≥ 3
and lims−→0 s2G(s) is Hermitian and positive semidefinite.

Unlike the NI definition presented in [17], Definition 2 al-
lows for (up to two) poles at the origin. In the next section, we
will present a generalized NI lemma corresponding to this defini-
tion.

3.1. Generalized negative imaginary lemma

Here, we present an NI lemma that allows for systemswith free
body motion to be included in the NI framework.
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