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a b s t r a c t

In this paper, we consider a stochastic multi-group Lotka–Volterra mutualistic system under regime
switching. It is well known that the population is forced to expire when the perturbation is sufficiently
large. The main aim here is to investigate its ergodic property and positive recurrence by stochastic
Lyapunov functions under small perturbation, which can be used to explain some recurring phenomena
in practice and thus provide a good description of permanence. The mean of the stationary distribution is
estimated. Simulations are also carried out to confirm our analytical results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Taking the white and color noise into account, population sys-
tems described by stochastic differential equations with regime
switching have recently been studied by many authors; see [1–9],
for example. It is well known that, when the perturbation is large,
the population will be forced to expire whilst it remains stochas-
tic permanent when the perturbation is small, which can provide
some explanation of dynamical behavior fromabiological perspec-
tive.

In practice, we may often observe the recurrence of higher and
lower population levels of a permanent population system as time
goes by. See [10–18] and their references for pollination mutual-
ism as examples. If we make a great number of records to inves-
tigate the dynamic behavior of a population system, we may find
that the average of the records approaches a fixed positive point,
but a single record may fluctuate around this fixed point even if
the number of records is large. Then, how can we explain such
biological phenomena? In such a case, stochastic permanence or
limits of integral average do not seem adequate, so we need to
investigate other dynamical properties to illustrate such biolog-
ical phenomena. Therefore, in this paper, we concentrate on the
ergodic property and positive recurrence of a multi-group Lotka–
Volterra mutualistic population system to try to give a good expla-
nation of the above biological phenomena (see Remark 3.1).
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Consider a stochastic multi-group Lotka–Volterra system char-
acterized by the following stochastic differential equation with
color and white noise:

dx(t) = diag(x1(t), . . . , xn(t))[(b(r(t)) + A(r(t))x(t)dt)
+ σ(r(t))dB(t)], (1.1)

where x = (x1, . . . , xn)τ , B = (B1, . . . , Bd)
τ is a standard d-

dimensional Brownian motion, {r(t), t ≥ 0} is a right-continuous
Markov chain independent of the BrownianmotionB, taking values
in a finite state space S = {1, . . . ,N} with generator Γ = (γij)N×N
given by

P{r(t + δ) = j|r(t) = i} =


γijδ + o(δ) if i ≠ j,
1 + γi,iδ + o(δ) if i = j, (1.2)

and, for any k ∈ S, b(k) = (b1(k), . . . , bn(k))τ , A(k) = (aij(k))n×n,
σ(k) = (σij(k))n×d. We also assume that, for k ∈ S, Rank(σ (k)) =

n, and aii(k) < 0, aij(k) ≥ 0, 1 ≤ i, j ≤ n, i ≠ j. This means that Eq.
(1.1) is a mutualistic system in which every species enhances the
growth of each other [19–21].

In this paper, we investigate the ergodic property and positive
recurrence of Eq. (1.1) by stochastic Lyapunov functions with
regime switching [22],which implies the existence anduniqueness
of a stationary distribution. We show that the ergodic property
and positive recurrence can provide a biological perspective of
cycling phenomena of a population system, and hence describe the
permanence of a population system in practice.

The paper is organized as follows. In Section 2, we introduce
some notation and assumptions, which are necessary for later dis-
cussion. In Section 3, we use a class of stochastic Lyapunov func-
tions with regime switching to obtain the ergodic property and
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positive recurrence, which account for some recurring events of
a population system. The mean of the stationary distribution of a
population system is also investigated. In Section 4, we report re-
sults of computer simulations to confirm our theoretical analysis.
In Section 5, we provide a concluding discussion to end this paper.

2. Preliminaries

Throughout this paper, unless otherwise specified, let (Ω, F ,
{Ft}t≥0, P) be a complete probability spacewith a filtration {Ft}t≥0
satisfying the usual conditions (i.e., it is right continuous and in-
creasing while F0 contains all P-null sets). Rn

+
denotes the positive

zone in Rn, i.e., Rn
+

= {x ∈ Rn
; xi > 0, 1 ≤ i ≤ n}. If B is a symmetric

n × nmatrix, we recall the following notation:

λ+

max(B) = sup
x∈Rn

+
,|x|=1

xτBx, (2.1)

which is introduced in [1,23]. Thus, for any x ∈ Rn
+
, we have

xτBx ≤ λ+

max(B)|x|
2. (2.2)

We also assume that Markov chain {r(t), t ≥ 0} is irreducible,
i.e., each state can reach any other in finite time. By the classical
theory of a Markov chain, the finite states imply the ergodicity and
positive recurrence of {r(t), t ≥ 0}. HenceMarkov chain {r(t), t ≥

0} has a unique stationary distributionπ = (π1, . . . , πN) such that

πΓ = 0,
N

k=1

πk = 1, πk > 0, 1 ≤ k ≤ N (2.3)

and, for any vector f = (f (1), . . . , f (N))τ ,

lim
T→∞

1
T

 T

0
f (r(t))dt =

N
i=1

f (i)πi.

Now, we introduce some criteria on the ergodic property and
positive recurrence of diffusion systems with a switching regime
[22]. Let (y(t), r(t)) be the diffusion process described by the fol-
lowing equation:

dy(t) = f (y(t), r(t))dt + g(y(t), r(t))dB(t),
y(0) = y, r(0) = r,

(2.4)

where B(·) and r(·) are the d-dimensional Brownian motion and
the right-continuousMarkov chain in the above discussion, respec-
tively, and f (·, ·) : Rn

× S → Rn, g(·, ·) : Rn
× S → Rn×d satisfying

g(y, k)gτ (y, k) = C(y, k), 1 ≤ k ≤ n. For each k ∈ S, and for any
twice continuously differentiable function V (·, k), we define L by

LV (y, k) =

n
i=1

fi(y, k)
∂V (y, k)

∂yi

+
1
2

n
i,j=1

Cij(y, k)
∂2V (y, k)
∂yi∂yj

+

N
i=1

γkiV (y, i).

To show the ergodic property and positive recurrence of Eq. (1.1),
we introduce some well-known results (implied by Theorem 3.10
on p. 1162, Theorem 3.13 on p. 1164, Theorem 4.3 on p. 1168, and
Theorem 4.4 on p. 1169 of [22]) as a lemma.

Lemma 2.1. If the following conditions are satisfied:
(i) for any k ∈ S, C(y, k) is symmetric and satisfies

κ1|ξ |
2

≤ ⟨C(y, k)ξ , ξ⟩ ≤ κ−1
1 |ξ |

2 for all ξ ∈ Rn,

with some constant κ1 ∈ (0, 1] for all y ∈ Rn;
(ii) for all i ≠ j, γij > 0;
(iii) there exists a nonempty open set D with compact closure,

satisfying that, for each k ∈ S, there exists a nonnegative function

V (·, k) : Dc
→ R such that V (·, k) is twice continuously differentiable

and that, for some α > 0,

LV (y, k) ≤ −α, (y, k) ∈ Dc
× S,

then (y(t), r(t)) of Eq. (2.4) is ergodic and positive recurrent. That is to
say, there exists a unique stationary density µ(·, ·) and, for any Borel
measurable function f (·, ·) : Rn

× S → R such that
k∈S


Rn

|f (y, k)|µ(y, k)dy < ∞,

we have

P


1
T

 T

0
f (y(t), r(t))dt

→


k∈S


Rn

f (y, k)µ(y, k)dy as T → ∞


= 1.

Positive recurrence of (y(t), r(t)) means that, for any Ũ = D̃ × {k},
where D̃ is any nonempty open set and k ∈ S, (y(t), r(t)) can reach
Ũ in finite time, a.e., and their hitting time is integrable (see Sec-
tion 3 in [22]).

3. Ergodic property of positive recurrence

Before further discussion, we need to show that Eq. (1.1) has a
unique positive solution, which is essential in modeling a popu-
lation system. Since the coefficients of Eq. (1.1) do not satisfy the
linear growth condition, the classical theory of stochastic differen-
tial equations is not applicable directly. In recent papers (see, e.g.,
[24,23,25,26]), there are some standard techniques to prove the ex-
istence and uniqueness of a positive solution to Eq. (1.1), sowe give
the following theorem without proof.

Theorem 3.1. Assume that, for any k ∈ S, there exist positive con-
stants c1(k), . . . , cn(k) such that

max
k∈S


λ+

max


C̄(k)A(k) + Aτ (k)C̄(k)


≤ 0,

where C̄(k) = diag(c1(k), . . . , cn(k)). Then, for any initial value x(0)
∈ Rn

+
, r(0) ∈ S, Eq. (1.1) has a unique positive solution almost surely.

It is well known that large perturbation makes a population
system expire (see, e.g., [1,24,4]). Then what will happen when the
perturbation is relatively small? Recently, Li et al. [24] and Pang
et al. [5] use the moment estimate and the Borel–Cantelli lemma
to obtain the stochastic permanence and asymptotic bound of the
integral average under small perturbation. In particular, Mao [21]
discusses the existence and uniqueness of a stationary distribution
in the presence of white noise. But there are few papers that have
concentrated on the ergodic property and positive recurrence of
a population system with a switching regime, which can provide
a better description of the permanence of a population system in
practice, and illustrate some recurrent events from a biological
perspective.

First, by recent papers (see, e.g., [24,23,25,26]), there is the
uniqueness of a positive solution to Eq. (1.1), that is to say, xi(t) >
0, 1 ≤ i ≤ n. Thus, for any 1 ≤ i ≤ n, let
ui(t) = log xi(t), for t ≥ 0 (3.1)
and u(t) = (u1(t), . . . , un(t)). Then Itô’s formula yields, for any
1 ≤ i ≤ n,

dui(t) =


bi(r(t)) +

n
j=1

aij(r(t)) exp(uj(t))

−
1
2

d
j=1

σ 2
ij (r(t))


dt +

d
j=1

σij(r(t))dBj(t). (3.2)
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