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a b s t r a c t

Asymptotic stabilization on noncontractible manifolds is a difficult control problem. If a configuration
space is not a contractible manifold, we need to design a time-varying or discontinuous state feedback
control for asymptotic stabilization at the desired equilibrium.

For a system defined on Euclidean space, a discontinuous state feedback controller was proposed by
Riffordwith a semiconcave strict control Lyapunov function (CLF). However, it is difficult to apply Rifford’s
controller to stabilization on general manifolds.

In this paper, we restrict the assumption of semiconcavity of the CLF to the ‘‘local’’ one, and introduce
the disassembled differential of locally semiconcave functions as a generalized derivative of nonsmooth
functions. Further, we propose a Rifford–Sontag-type discontinuous static state feedback controller for
asymptotic stabilization with the disassembled differential of the locally semiconcave practical CLF (LS-
PCLF) bymeans of sample stability. The controller does not need to calculate limiting subderivative of the
LS-PCLF.

Moreover, we show that the LS-PCLF, obtained by the minimum projection method, has a special ad-
vantage with which one can easily design a controller in the case of the minimum projection method.
Finally, we confirm the effectiveness of the proposed method through an example.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Asymptotic stabilization on noncontractible manifolds, a diffi-
cult control problem [1–3], has been studied by a few researchers
[1,2,4–7]. The main problem is that a noncontractible manifold, as
a configuration space, never has a continuous asymptotically sta-
bilizing static state feedback control at any desired equilibrium.
Hence one needs to design a discontinuous or time-varying sta-
bilizing controller [3].

Control Lyapunov functions (CLFs) play an important role in
feedback control design [3,8,9]. In particular, semiconcave strict
CLFs enable designing discontinuous asymptotic stabilizing con-
trollers [10]. Rifford proposed a discontinuous controller, defined
on Euclidean space, based on semiconcave strict CLFs [10]. How-
ever, Rifford’s controller cannot be directly applied to stabilization
on manifolds or systems with unbounded inputs.

In this paper, we introduce the framework of a locally semi-
concave practical CLF for stabilization on manifolds. We consider
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the disassembled differential instead of the limiting subderiva-
tive of a locally semiconcave function. Then, we show that the
directional subderivative used in the definition of the practical
CLF is replaced with the disassembled differential. Further, we
propose a Rifford–Sontag-type discontinuous asymptotically sta-
bilizing static state feedback controller with the disassembled dif-
ferential of the locally semiconcave practical control Lyapunov
function (LS-PCLF) by means of sample stability.

For general differentiable manifolds, we proposed the mini-
mum projection method to design a locally semiconcave strict CLF
[11,12], but we did not show how to stabilize the origin of control
systems defined on manifolds with the LS-PCLFs. In this paper, we
show that the locally semiconcave CLF, obtained by the minimum
projectionmethod, is particularly advantageous for calculating the
disassembled differential. Therefore, one can easily design a con-
troller when the LS-PCLF is obtained by the minimum projection
method.

2. Preliminaries

2.1. Differentiable manifolds

A brief introduction of differentiable manifolds is necessary to
discuss the control systems defined on manifolds [13,14]. In this
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paper,X denotes an n-dimensional smoothmanifold, TxX a vector
space called the tangent space to X at x, and an element of TxX a
tangent vector at x. T ∗

x X denotes the dual space to TxX, called the
cotangent space at x, and an element of T ∗

x X a cotangent vector (or
a differential 1-form) at x. A subsetM ⊂ X is said to be precompact
in X, if its closure in X is compact. For each x ∈ X, there exists a
local chart (W, η) such that W ⊂ X and η : W → Y = Im(η) ⊂

Rn is a homeomorphism. Then, η(x) is called the local coordinate
representation of xwith the chart (W, η).

Consider a function V : X → R and a chart (W, η) for X. Then,
the function VW : Y → R, defined by VW (ξ) = V ◦ η−1(ξ), is
called the coordinate representation of V . Note that VW is defined
on a subset of Rn. Therefore, addition and scalar multiplication are
defined as usual. By the same manner, fW denotes the local coor-
dinate representation of f ∈ TxX. Let V : X → R be a smooth
function. The mapping dV : X → T ∗

x X denotes the differential
of V . Let (ξ1, . . . , ξn) be local coordinates of X with a local chart
(W, η). Then, the mapping dVW can be defined by

dVW (η(x)) =

n
i=1

∂VW

∂ξi
(η(x))dξi. (1)

The natural pairing ⟨dV , f ⟩ between a cotangent vector and a tan-
gent vector is defined by Lie derivative as follows: ⟨dV , f ⟩ = Lf V .
In local coordinates,

⟨dV (x), f (x)⟩W =

n
i=1

∂VW

∂ξi
fW i(η(x)). (2)

If X and X̃ are smooth manifolds and φ : X̃ → X is a smooth
mapping, for each x̃ ∈ X̃, the mapping φ∗ : Tx̃X̃ → Tφ(x̃)X de-
notes the differential (or the pushforward) of φ. Let (ξ1, . . . , ξn)
and (ξ̃1, . . . , ξ̃n) be local coordinates of X and X̃ at φ(x̃) and x̃
with local charts (W, η) and (W̃, η̃), respectively. Then, the map-
ping φ∗W̃,W : Ỹ → Y can be defined by

φ∗W̃,W


∂

∂ξ̃i


=

n
j=1

∂(η ◦ φ ◦ η̃−1)j

∂ξ̃i

∂

∂ξj
(1 ≤ i ≤ n). (3)

A function V : X → R is called locally semiconcave (with linear
modulus [15]) if for any chart (W, η) and compact set M ⊂ W ,
there exists C > 0 such that

V (x)+ V (y)− 2VW


1
2
(η(x)+ η(y))


≤ C∥η(x)− η(y)∥2 (4)

for all x, y ∈ M satisfying (η(x)+ η(y))/2 ∈ η(M). Note that, the
existence of C does not depend on the choice of charts.

2.2. Control systems defined on differentiable manifolds

We consider the following nonlinear control system on a finite-
dimensional arc-connected C1-differentiable manifold X:

ẋ = f (x, u), (5)

where x ∈ X, u ∈ U ⊂ F(R,Rm); t → u(t) ∈ U ⊂ Rm, and
where F(R,Rm)denotes a set ofmappings fromR toRm.Moreover,
a mapping f : X × U → TxX is assumed to satisfy f (0, 0) = 0,
where 0 ∈ X, called the origin, is the desired equilibrium, and
locally Lipschitz continuous with respect to x; i.e., for a fixed u0 ∈

U, a local chart (W, η) and a compact set M ⊂ W , there exists L
such that

∥fW (η(y), u0)− fW (η(x), u0)∥ < L∥η(y)− η(x)∥ (6)

for all x, y ∈ M.
A function k : X → U is called a static state feedback (or sim-

ply feedback). The objective of the paper is to develop an asymp-
totically stabilizing static state feedback controller u = k(x) at the
origin of (5).

We consider the sample-and-hold solution, defined as follows,
as solutions of (5).

Definition 1 (Partition [5,16]). Any infinite sequence π = {ti ∈

R≥0}i∈Z≥0 consisting of numbers 0 = t0 < t1 < t2 < · · · with
limi→∞ ti = +∞ is called a partition and the number d(π) :=

supi∈Z≥0
(ti+1 − ti) its diameter.

Definition 2 (Sample-and-Hold Solution [5,16,17]). Let u = k(x) be
a given feedback, π a partition, and x ∈ X an initial state. The
sample-and-hold solution ψ(t, x, k(x)) : R≥0 × X × U → X for
(5) is defined as the mapping such thatψ(t, x, k(x)) = x(t), where
x(t) is a continuous mapping obtained by recursively solving

ẋ(t) = f (x(t), k(x(ti))) (7)

from the initial time ti to the maximal time

si = max {ti, sup{s ∈ [ti, ti+1]|x(·) is defined on [ti, s)}} , (8)

with x(0) = x.

The feedback u = k(x) implicitly determines the control u(t) =

k(x(t)) by the sample-and-hold solution. Note that every sample-
and-hold solution is absolutely continuous. Then, the following
lemma holds:

Lemma 1. Consider a diffeomorphism φ : X̃ → M, where M ⊂ X.
Then, φ−1(ψ(t, x, k(x))) is a sample-and-hold solution of ˙̃x = φ−1

∗

f (φ(x̃), k(φ(x̃))) if and only if ψ(t, x, k(x)) is a sample-and-hold so-
lution of (5) on M.

We define sample stability as follows [5, s-stability]:

Definition 3 (Sample Stability). Consider system (5).P denotes the
set of all open precompact subset of X containing the origin.

A feedback k : X → U is said to sample stabilize the origin of
the system (5) if the following holds for arbitrary sets R1,R2 ∈ P

such that R1 ⊂ R2.

(1) There exists a set M ⊂ X depending only upon R2 and two
positive numbersΩ, T > 0depending onR1 andR2 such that,
for any initial value x ∈ R2, for any partition π of the diame-
ter less than Ω , the corresponding sample-and-hold solution
ψ(t, x, k(x)) satisfies the following conditions:
(a) ψ(t, x, k(x)) ∈ R1 for all t ≥ T ,
(b) ψ(t, x, k(x)) ∈ M for all t ≥ 0.

(2) for each E ∈ P, there exists a set P ∈ P such that if R2 ⊂

P ,M in (1) can be chosen satisfying M ⊂ E .

3. Locally semiconcave control Lyapunov functions

3.1. Locally semiconcave practical control Lyapunov functions

Strict CLFs are commonly used for the development of an
asymptotically stabilizing controller. For discontinuous control de-
sign, semiconcave strict CLF was introduced by Rifford [10]. The
locally semiconcave strict CLF is defined as follows.

Definition 4 (Locally Semiconcave Strict CLF).A global locally semi-
concave strict control Lyapunov function for system (5) is a locally
semiconcave function V : X → R such that the following proper-
ties hold:

(A1) V is proper; that is, the set {x ∈ X|V (x) ≤ L} is compact for
every L > 0.

(A2) V is positive definite; that is, V (0) = 0, and V (x) > 0 for all
x ∈ X \ {0}.
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