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a b s t r a c t

Since a quantum system, which is one of the foci of ongoing research, is a classical example of a complex-
valued system, in this paper, the issue of asymptotic stability of solutions to complex-valued nonlinear
delay differential systems is addressed. By taking advantage of the theory ofmatrixmeasure, the exponen-
tial stability criteria of a complex-valued nonlinear delay system are established, which not only improve
some known results in literature, but also greatly reduce the complexity of analysis and computation. As
an application, the exponential stability conditions of 2-dimensional real-valued time-varying delay sys-
tems are derived, the conditions are easier to verify in comparison with known results. The effectiveness
of the main results are illustrated by some numerical examples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Stability of stationary solutions of dynamic systems, which con-
cerns the long-term, qualitative properties of systems, is one of
the fundamental issues in differential equation theory and appli-
cations. It has attracted an increasing research interest within the
control community, for example [1–6] and references therein. Re-
cently, some researchers have studied the stability of real differen-
tial systems using matrix measures [7–10]. However, the common
setting adopted in the aforementioned works is always the real
number field, namely, the study objectives are real-valued dif-
ferential systems. The study objective in this paper are complex-
valued differential systems. Complex-valued differential systems
also have many potential applications in science and engineering.
For example, quantum systems, which are one of the foci of on-
going research [11–14], are classical complex-valued differential
systems. Another important example of complex-valued differen-
tial systems are complex-valued neural networks. Complex-valued
neural networks have been found highly useful in extending the
scope of applications in optoelectronics, filtering, imaging, speech
synthesis, computer vision, remote sensing, quantum devices,
spatio-temporal analysis of physiological neural devices and sys-
tems, and artificial neural information processing [15–17]. In fact,
equations of many classical systems except quantum systems and
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complex-valued neural networks, such as the Ginzburg–Landau
equation [18], theOrr–Sommerfeld equation [19], the complex Ric-
cati equation [20] and the complex Lorenz equation [21], are con-
sidered in the complex field. Hence, it is significative and important
to study the properties of complex-valued differential systems.

Generally speaking, complex-valued differential systems are
more complex and difficult than real-valued differential systems.
The usual method analyzing complex-valued differential systems
is to separate them into a real part and an imaginary part, and then
to recast them into an equivalent real-valued differential system,
see [16,22,21,23] and references therein. But this method encoun-
ters two problems. One is that the dimension of the real-valued
system is double that of complex-valued system, which leads to
difficulties in analysis. The other one is that this method needs
an explicit separation of a complex-valued function f (t, z) into its
real part and imaginary part; however, this separation is not al-
ways expressible in an analytical form. An efficient way to analyze
a complex-valued system is to retain the complex nature of the
system and consider its properties on Cn [24–27].

To the best of our knowledge, there have been few reports about
the analysis and synthesis of complex-valued delay differential
systems except [28–30,23,31,32], and there is no result so far about
the stability of general complex-valued nonlinear delay differential
systems with n (n > 1) dimension. In this paper, the exponential
stability of the zero solution of the following complex-valued delay
differential equation

ż(t) = A(t)z(t) + B(t)z(t) + C(t)z(t − τ)

+D(t)z(t − τ) + h(t, z(t), z(t − τ)) (1)
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is discussed, where τ > 0 is a constant delay, A(t), B(t), C(t), D(t)
are complex time-varying n×nmatrices, z ∈ Cn is the state vector,
z is the conjugate of z, and h is a complex-valued vector function
with dimension n. Although system (1)with the caseA(t) = A ∈ C,
C(t) = C ∈ C and B(t) = D(t) = h = 0 were discussed in
[30,23,28], for the general case, it was only discussed by Kalas
in [29,31,32]. However, Kalas just gave the stability conditions of
system (1) with n = 1, and the stability criteria and derivation
process were also very complicated. In this paper, the stability cri-
teria of complex-valued delay differential system (1) are obtained
by using the matrix measure, and the derived stability criteria not
only improve some known results in literature, but also greatly
reduce the complexity of analysis and computation. As an appli-
cation, the exponential stability conditions of 2-dimensional real-
valued time-varying delay systems are derived, the conditions are
easier to verify in comparison with known results.

The remainder of the paper is organized as follows. In Section 2,
the conceptions of matrix measure and the definition of stability
of complex-valued nonlinear differential systems are presented.
The exponential stability criteria of complex-valued nonlinear
delay differential systems are established by virtue of the matrix
measure theory in Section 3. The main points of the paper are
illustrated by some numerical examples in Section 4. Finally, some
conclusions are drawn in Section 5.

2. Preliminaries

First, the definition and essential properties of the matrix mea-
sure is given. Consider a complex squarematrix P = (pij(t))n×n. Let
∥P∥θ denote amatrix normwhich is the operator norm induced by
the corresponding vector norm of | · |θ , θ = 1, 2, ∞, ω.

Definition 2.1 ([33,34]). Thematrixmeasure induced from a given
matrix norm ∥P∥θ is defined as

µθ (P) = lim
h→0+

∥I + hP∥θ − 1
h

,

where I is the identity matrix.
Properties and calculations on thematrixmeasure can be found

in [33,34], from which the matrix measure corresponding to the
commonly-used matrix norms are collected. When the matrix
norm

∥P∥1 = max
j

n
i

|pij|, ∥P∥2 = [λmax(P∗P)]1/2,

∥P∥∞ = max
i

n
j
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j

n
i

ωj

ωi
|pij|,

we can obtain the corresponding matrix measure

µ1(P) = max
j


Re(pjj) +

n
i≠j,i=1

|pij|


,
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1
2
λmax


P∗

+ P

,

µ∞(P) = max
i


Re(pii) +
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j≠i,j=1

|pij|


,

µω(P) = max
j


Re(pjj) +

n
i≠j,i=1

ωj

ωi
|pij|


,

where P∗ denotes the conjugate transpose of P , ω = diag{ω1, ω2,
. . . , ωn} > 0, the vector norm |x|ω = |ω−1x|1, Re(p) and |p| are the
real part and modules of complex number p, respectively.

Second, we give some definitions about complex-valued delay
functional differential equations.

Suppose τ ≥ 0 is a given real number, R = (−∞, +∞), Cn

is the n-dimensional complex linear vector space with norm | · |θ .
C([a, b], Cn) is the Banach space of continuous functions mapping
the interval [a, b] into Cn with the topology of uniform conver-
gence. Denote Ω = C([−τ , 0], Cn) and designate the norm of an
element ϕ ∈ Ω by ∥ϕ∥θ = sup−τ≤s≤0{|ϕ(s)|θ }. If

t0 ∈ R, A ≥ 0, and z ∈ C([t0 − τ , t0 + A], Cn),

then for any t ∈ [t0, t0 + A], let zt ∈ Ω be defined by zt(γ ) =

z(t + γ ), γ ∈ [−τ , 0]. If D is a subset of R × Ω , f : D → Cn is a
given function and ‘‘D+’’ represents the right-hand derivative, we
say that the equation

D+z(t) = f (t, zt) (2)

is a complex-valued delay functional differential equation. Assume
that for all t ∈ R, f (t, 0) ≡ 0 and z(t0, ϕ)(t) is the unique solution
of (2) with initial value ϕ ∈ Ω at t0 ∈ R.

Definition 2.2. The zero solution of (2) is said to be exponentially
stable if there exist positive reals η, δ and k such that

|z(t)|θ ≤ k∥zt0∥θ exp{−η(t − t0)}, ∀∥zt0∥θ < δ,

for all t ≥ t0.

In addition, the following lemma, which is slightly modified
from [35], is needed in the proof of our main results.

Lemma 2.1. Assume that the function f (t) or g(t) is bounded and
inft≥t0{f (t) − g(t)} > 0, for all t ∈ [t0, +∞)

D+v(t) ≤ −f (t)v(t) + g(t)∥vt∥θ ,

where v(t) ∈ C([t0 − τ , +∞), R+), τ > 0, f (t), g(t) ∈ C([t0,
+∞), R+), ∥vt∥θ = supt−τ≤s≤t{|v(s)|θ }, then there exists a constant
η > 0 such that

v(t) ≤ ∥vt0∥θ exp {−η(t − t0)} ,

for t ∈ [t0 − τ , +∞).

3. Main results

In this section, some sufficient conditions of exponential stabil-
ity of system (1) are given by the matrix measure theory.

Theorem 3.1. If the following conditions hold:

(i) there exist L1(t), L2(t) ∈ C([t0, +∞), R) such that, for any
z, w ∈ Cn

|h(t, z, w)|θ ≤ L1(t)|z|θ + L2(t)|w|θ ; (3)

(ii) f (t) or g(t) is bounded, inft≥t0{f (t) − g(t)} > 0 and g(t) > 0,
where

f (t) = − [µθ (A(t)) + ∥B(t)∥θ + L1(t)] ,
g(t) = ∥C(t)∥θ + ∥D(t)∥θ + L2(t),

then the zero solution of system (1) is exponentially stable.

Proof. Assume that z(t0, ϕ)(t) is the unique solution of system (1)
with initial value ϕ ∈ Ω at t0, for convenience, we denote z(t) :=

z(t0, ϕ)(t) and

J = D+
|z(t)|θ − µθ (A(t)) |z(t)|θ − ∥C(t)∥θ |z(t − τ)|θ

− ∥D(t)∥θ |z̄(t − τ)|θ − |h(t, z(t), z(t − τ))|θ .
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