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a b s t r a c t

Networked control strategies based on limited information about the plant model usually result in worse
closed-loop performance than optimal centralized control with full plant model information. Recently,
this fact has been established by utilizing the concept of competitive ratio, which is defined as the worst-
case ratio of the cost of a control design with limited model information to the cost of the optimal
control design with full model information. We show that an adaptive controller, inspired by a controller
proposed by Campi andKumar,with limited plantmodel information, asymptotically achieves the closed-
loop performance of the optimal centralized controller with full model information for almost any plant.
Therefore, there exists, at least, one adaptive control design strategywith limited plantmodel information
that can achieve a competitive ratio equal to one. The plant model considered in the paper belongs to a
compact set of stochastic linear time-invariant systems and the closed-loop performance measure is the
ergodic mean of a quadratic function of the state and control input.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Networked control systems are often complex large-scale engi-
neered systems, such as power grids [1], smart infrastructures [2],
intelligent transportation systems [3–5], or future aerospace sys-
tems [6,7]. These systems consist of several subsystems each one
often having many unknown parameters. It is costly, or even un-
realistic, to accurately identify all these plant model parameters
offline. This fact motivates us to focus on optimal control design
under structured parameter uncertainty and limited plant model
information constraints.

There are some recent studies in optimal control design with
limited plant model information [8–12]. The problem was initially
addressed in [8] for designing static centralized controllers for a
class of discrete-time linear time-invariant systems composed of
scalar subsystem, where control strategies with various degrees
of model information were compared using the competitive ratio,
i.e., the worst-case ratio of the cost of a control design with limited
model information scaled by the cost of the optimal control design
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with full model information. The result was generalized to the
static decentralized controllers for a class of systems composed of
fully-actuated subsystems of arbitrary order in [9]. More recently,
the problem of designing optimal H2 dynamic controllers using
limited plant model information was considered in [10]. It was
shown that, when relying on local model information, the smallest
competitive ratio achievable for any control design strategy for
distributed linear time-invariant controllers is strictly greater than
one; specifically, equal to the square root of twowhen the B-matrix
was assumed to be the identity matrix.

In this paper, we generalize the set of applicable controllers
to include adaptive controllers. We use the ergodic mean of a
quadratic function of the state and control as a performance mea-
sure of the closed-loop system. Choosing this closed-loop per-
formance measure allows us to use certain adaptive algorithms
available in the literature [13–16]. In particular, we consider an
adaptive controller proposed by Campi and Kumar [13], which
uses a cost-biased (i.e., regularized) maximum-likelihood estima-
tor for learning the unknown parts of the model matrices. We
prove that this adaptive control design achieves a competitive ra-
tio equal to one and, hence, the smallest competitive ratio that a
control design strategy using adaptive controllers can achieve is
equal to one (since this ratio is always lower-bounded by one). This
is contrary to control design strategies that construct linear time-
invariant control laws [8–12]. This shows that, although the design
of each subcontroller is only relying on local model information,
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the closed-loop performance can still be as good as the optimal
control design strategy with full model information (in the limit).

The rest of the paper is organized as follows. In Section 2,
we present the mathematical problem formulation. In Section 3,
we introduce the Campi–Kumar adaptive controller using only
local model information and show that it achieves a competitive
ratio equal to one. We use this adaptive algorithm on a vehicle
platooning problem in Section 4 and conclude the paper in
Section 5.

1.1. Notation

The sets of natural and real numbers are denoted by N and R,
respectively. Let N0 = N ∪ {0}. Additionally, all other sets are
denoted by calligraphic letters such as P .

Matrices are denoted by capital Roman letters such as A.
The entry in the ith row and the jth column of matrix A is aij.
Moreover, Aij denotes a submatrix of matrix A, the dimension and
the position of which will be defined in the text. A > (≥)0 means
that symmetric matrix A ∈ Rn×n is positive definite (positive
semidefinite) and A > (≥)Bmeans A− B > (≥)0. Let Sn

++
(Sn
+
) be

the set of positive definite (positive semidefinite) matrices inRn×n.
LetmatricesA ∈ Rn×n, B ∈ Rn×m,Q ∈ Sn

+
, and R ∈ Sm

++
be given

such that the pair (A, B) is stabilizable and the pair (A,Q 1/2) is
detectable. We define X(A, B,Q , R) as the unique positive definite
solution of

X = A⊤XA− A⊤XB

B⊤XB+ R

−1
B⊤XA+ Q .

In addition, we define

L(A, B,Q , R) = −

B⊤X(A, B,Q , R)B+ R

−1
B⊤X(A, B,Q , R)A.

WhenQ and R are not relevant or can be deduced from the text, we
use X(A, B) and L(A, B) instead of X(A, B,Q , R) and L(A, B,Q , R),
respectively.

All graphs G considered in this paper are directed with vertex
set {1, . . . ,N} for a given N ∈ N. The adjacency matrix S ∈
{0, 1}N×N of G is a matrix whose entry sij = 1 if (j, i) ∈ E and
sij = 0 otherwise for all 1 ≤ i, j ≤ N .

A measurable function f : Z → R is said to be essentially
bounded if there exists a constant c ∈ R such that |f (z)| ≤ c
almost everywhere. The greatest lower bound of these constants
is called the essential supremum of f (z), which is denoted by
ess supz∈Zf (z). Let mappings f , g : Z → R be given. Denote f (k)
= O(g(k)) and f (k) = o(g(k)), respectively, if lim supk→∞ |f (k)/
g(k)| < ∞ and lim supk→∞ |f (k)/g(k)| = 0. Finally, χ(·) denotes
the characteristic function, i.e., it gives a value equal to one if its
statement is satisfied and a value equal to zero otherwise.

2. Problem formulation

2.1. Plant model

Consider a discrete-time linear time-invariant dynamical sys-
tem composed of N subsystems, such that the state-space repre-
sentation of subsystems i, 1 ≤ i ≤ N , is

xi(k+ 1) =
N
j=1

[Aijxj(k)+ Bijuj(k)] + wi(k); xi(0) = 0,

where xi(k) ∈ Rni , ui(k) ∈ Rmi , and wi(k) ∈ Rni are state, con-
trol input, and exogenous input vectors, respectively. We assume
that {wi(k)}∞k=0 are independent and identically distributed Gaus-
sian random variables with zero means E{wi(k)} = 0 and unit co-
variances E{wi(k)wi(k)⊤} = I . The assumption of unit covariance
is without loss of generality and is only introduced to simplify the
presentation. To show this, assume that E{wi(k)wi(k)⊤} = Hi ∈

S
ni
++ for all 1 ≤ i ≤ N . Now, using the change of variables x̄i(k) =

H−1/2i xi(k) and w̄i(k) = H−1/2i wi(k) for all 1 ≤ i ≤ N , we get

x̄i(k+ 1) =
N
j=1

[Āijx̄j(k)+ B̄ijuj(k)] + w̄i(k),

in which Āij = H−1/2i AijH
1/2
j and B̄ij = H−1/2i Bij for all 1 ≤ i, j ≤ N .

This gives E{w̄i(k)w̄i(k)⊤} = I . In addition, let wi(k) and wj(k) be
statistically independent for all 1 ≤ i ≠ j ≤ N . Note that this
assumption is often justified by the fact that in many large-scale
systems, such as smart grids, the subsystems are scattered geo-
graphically and, hence, the sources of their disturbances are inde-
pendent. We introduce the augmented system as

x(k+ 1) = Ax(k)+ Bu(k)+ w(k); x(0) = 0,

where the augmented state, control input, and exogenous input
vectors are

x(k) = [x1(k)⊤ · · · xN(k)⊤]⊤ ∈ Rn,

u(k) = [u1(k)⊤ · · · uN(k)⊤]⊤ ∈ Rm,

w(k) = [w1(k)⊤ · · ·wN(k)⊤]⊤ ∈ Rn,

with n =
N

i=1 ni and m =
N

i=1 mi. In addition, the augmented
model matrices are

A =

A11 · · · A1N
...

. . .
...

AN1 · · · ANN

 ∈ A ⊂ Rn×n,

B =

B11 · · · B1N
...

. . .
...

BN1 · · · BNN

 ∈ B ⊂ Rn×m.

Let a directed plant graph GP with its associated adjacency ma-
trix SP be given. The plant graph GP captures the interconnection
structure of the plants, that is, Aij ≠ 0 only if sPij ≠ 0. Hence, the
sets A and B are structured by the plant graph:

A ⊆ Ā = {A ∈ Rn×n
| sPij = 0⇒ Aij = 0 ∈ Rni×nj

for all i, j such that 1 ≤ i, j ≤ N},

B ⊆ B̄ = {B ∈ Rn×m
| sPij = 0⇒ Bij = 0 ∈ Rni×mj

for all i, j such that 1 ≤ i, j ≤ N}.

From now on, we present a plant with its pair of corresponding
model matrices as P = (A, B) and define P = A×B as the set of
all possible plants. We make the following assumption on the set
of all plants:

Assumption 1. The set A × B is a compact set (with nonzero
Lebesgue measure in the space Ā × B̄) and the pair (A, B) is
controllable for almost all (A, B) ∈ A×B.

The assumption that the pair (A, B) is controllable for almost all
(A, B) ∈ A × B is guaranteed if and only if the family of systems
is structurally controllable [17,18].

2.2. Adaptive controller

We consider (possibly) infinite-dimensional nonlinear con-
trollers Ki = (K(k)

i )k∈N0 for each subsystem i, 1 ≤ i ≤ N , with
control law

ui(k) = K(k)
i ({x(t)}kt=0 ∪ {u(t)}

k−1
t=0), ∀ k ∈ N0,

where K(k)
i :

k
i=1 Rn

×
k−1

i=1 Rm
→ Rmi is the feedback control

law employed at time k ∈ N0. Let Ki denote the set of all such
control laws. We also define K =

N
i=1 Ki as the set of all

admissible controllers.
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