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a b s t r a c t

In this work, we consider distributed moving horizon state estimation of nonlinear systems subject to
communication delays and data losses. In the proposed design, a local estimator is designed for each
subsystem and the distributed estimators communicate to collaborate. To handle the delays and data
losses simultaneously, a predictor is designed for each subsystemestimator. A two-stepprediction-update
strategy is used in the predictor design in order to get a reliable prediction of the systemstate. In the design
of each subsystem estimator, an auxiliary nonlinear observer is also taken advantage of to calculate a
reference subsystem state estimate. In the local estimator, the reference state estimate is used to generate
a confidence region within which the local estimator optimizes its subsystem state estimate. Sufficient
conditions under which the proposed design gives decreasing and ultimately bounded estimation error
are provided. The effectiveness of the proposed approach is illustrated via the application to a chemical
process example.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there is significant attention on the devel-
opment of distributed predictive control schemes for plant-wide
control of large-scale complex chemical processes [1–3]. In these
distributed schemes, different controllers communicate with each
other to coordinate their actions to achieve improved control
performance over decentralized control schemes; see, for ex-
ample, [4–11]. It has been demonstrated that these distributed
schemes are particularly useful for large-scale integrated pro-
cess networks [12,13] such that the coupling between differ-
ent operating units cannot be neglected. However, almost all of
these distributed predictive control schemes are dependent on the
availability of the state measurements of the entire system. It is
desirable to develop state estimation schemes in the distributed
framework.

In the literature, the results ondecentralized or distributed state
estimation are basically within three frameworks: decentralized
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deterministic observers, distributed Kalman filtering and dis-
tributed moving horizon estimation. Decentralized deterministic
observers have been developed for different classes of system but
primarily in the context of linear systems (e.g., [14–17]). Signifi-
cant efforts have been devoted to the development of distributed
Kalman filtering methods for sensor networks also primarily in
the context of linear systems (e.g., [18–20]). Distributed moving
horizon estimation (DMHE) schemes were developed for both lin-
ear constrained systems [21,22] and nonlinear systems [23]. The
above DMHE schemes have their origins from classical centralized
moving horizon estimation (MHE) [24]. They have the appealing
features of dealing with nonlinearities, constraints and optimality.
However, it is not easy to characterize the effects of bounded un-
certainties which is important from the output feedback control
point of view.

To address the above issues, an observer-enhanced DMHE de-
sign to estimate the state of large-scale systems in a distributed
manner was developed in [25]. The DMHE design in [25] is based
on a robust MHE developed in [26] where an auxiliary determin-
istic observer is taken advantage of to calculate confidence re-
gions for the actual system state and the local MHEs are only
allowed to optimize their subsystem state estimates within the
regions. It has been shown that the DMHE scheme gives ensured
ultimate boundedness properties of the estimation error. Since in
a distributed framework, communication between different con-
trollers/estimators is critical, it is of great importance to carefully
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consider issues that may be brought into the design by (especially
wireless) communication [27,28]. In [29], an approach was devel-
oped to handle time-varying delays in the communication network
of DMHE schemes. One limitation of the approach in [29] is that
it requires that all the transmitted information should be received
within amaximum allowable number of sampling periods. The ap-
proach in [29] is not capable of handling data losses in the shared
communication network which is one of the key issues introduced
by communication.

Inspired by the above considerations, in this work, we focus
on the development of a distributed moving horizon estimation
scheme that is capable of handling communication delays and
data losses simultaneously. In the proposed design, a local MHE is
designed for each subsystem and the distributed local MHEs com-
municate to exchange information and collaborate. In the com-
munication network, there may be time-varying delays and data
losses. To handle the delays and data losses simultaneously, a
predictor is designed for each subsystem estimator. A two-step
prediction-update strategy is used in the predictor design in or-
der to get a reliable prediction of the system state. Based on the
predictions as well as output measurements, an auxiliary nonlin-
ear observer is taken advantage of in each subsystem estimator to
generate a reference subsystemstate estimate. In the localMHEde-
sign, the reference state estimate is used to generate a confidence
region within which the local MHE optimizes its subsystem state
estimate. Sufficient conditions under which the proposed DMHE
gives decreasing and ultimately bounded estimation error are pro-
vided. Extensive simulations based on a chemical process example
illustrate the effectiveness of the proposed approach by comparing
it with three different distributed state estimation schemes from
different aspects.
Notation. The operator | · | denotes Euclidean norm of a scalar/
vector while | · |Q indicates the weighted Euclidean norm of a vec-
tor, defined as |x|Q =


xTQx where Q is a positive definite sym-

metric matrix. A function f (x) is said to be locally Lipschitz with
respect to its argument x if there exists a positive constant Lxf such
that |f (xa) − f (xb)| ≤ Lxf |xa − xb| for all xa and xb in a given region
of x and Lxf is the associated Lipschitz constant. A continuous func-
tion α : [0, a) → [0, ∞) is said to belong to class K if it is strictly
increasing and satisfies α(0) = 0. A function β(r, s) is said to be
a class KL function if for each fixed s, β(r, s) belongs to class K
with respect to r , and for each fixed r , it is decreasing with respect
to s, and β(r, s) → 0 as s → ∞. The symbol diag(v) denotes a di-
agonal matrix whose diagonal elements are the elements of vector
v. A matrix (or vector) A+ denotes the pseudoinverse of a matrix
(or vector) A. The symbol ‘\’ denotes the set subsection such that
A\B := {x ∈ Rnx |x ∈ A, x ∉ B}. The set I = {1, . . . ,m}.

2. Preliminaries

2.1. System description and problem formulation

We consider nonlinear systems that are composed of m inter-
connected subsystem. In particular, we consider that the dynamics
of subsystem i can be described as follows:

ẋi(t) = fi(xi(t), wi(t)) + f̃i(Xi(t))
yi(t) = hi(xi(t)) + vi(t)

(1)

where xi(t) ∈ Rnxi and yi(t) ∈ Rnyi denote the state vector
and output vector of subsystem i, respectively, wi(t) ∈ Rnwi and
vi(t) ∈ Rnvi characterize disturbances and measurement noise of
subsystem i, respectively. The term f̃i(Xi) characterizes the interac-
tion of subsystem iwith other subsystems and Xi contains subsys-
tem states involved in characterizing the interaction. The set Ii ⊂ I
(i ∈ I) will be used to denote the set of subsystem indices such

Fig. 1. The proposed DMHE design with communication delays and data losses.

that the corresponding subsystem states are involved in Xi. It is as-
sumed that the subsystem states xi, i ∈ I, are contained in convex
complex sets such that xi ∈ Xi, i ∈ I.

It is assumed that the subsystem disturbances and measure-
ment noise are bounded such as wi ∈ Wi and vi ∈ Vi for all i ∈ I
where Wi := {wi ∈ Rnwi : |wi| ≤ θwi} and Vi := {vi ∈ Rnvi :

|vi| ≤ θvi} with θwi , θvi for i ∈ I known positive real numbers. It is
also assumed that fi, f̃i and hi with i ∈ I are locally Lipschitz.

The entire system state x and output y are aggregations of
the subsystem states and outputs respectively such that x =

[xT1 · · · xTi · · · xTm]
T

∈ Rnx and y = [yT1 · · · yTi · · · yTm]
T

∈ Rny . The dy-
namics of the entire nonlinear system can be written in a compact
form as follows:

ẋ(t) = f (x(t), w(t)) + f̃ (x(t))
y(t) = h(x(t)) + v(t)

(2)

where w(t) ∈ Rnw is disturbance vector and v(t) ∈ Rnv is the
measurement noise vector which are aggregations of the subsys-
tem disturbance vectors and noise vectors, respectively, and f , f̃
and h are aggregations of fi, f̃i and hi for all the subsystems, respec-
tively. It is assumed that the outputs of them subsystems are sam-
pled synchronously and periodically at time instants {tk≥0} such
that tk = t0 + k∆ where t0 = 0 is the initial time, ∆ is a fixed
sampling time interval and k is a positive integer.

The objective of this work is to design a DMHE scheme for sys-
tem (2) that is capable of handling both communication delays and
data losses between local MHEs. A schematic of the proposed de-
sign is shown in Fig. 1. In this design, each subsystem is associated
with a local state estimator which includes a state predictor and
a moving horizon state estimator. The subsystem estimators com-
municate with each other via a shared communication network to
exchange information. The information exchanged via the shared
communication network may be subject to time-varying delays or
data losses.

In [29], an approach was developed to handle communica-
tion time-varying delays in the communication network of DMHE
schemes. The approach requires that all the transmitted informa-
tion should be received within a maximum allowable number of
sampling periods (i.e., the maximum allowable delay). However,
the approach is not capable of systematically handling data losses
in the shared communication network. In this work, we propose a
more general and unified approach to handle both communication
data losses as well as delays.

2.2. Observability assumptions and nonlinear observers

The local MHEs will be designed in the framework of robust
MHE [26]. An auxiliary nonlinear observer will be taken advantage
of in the design of each local MHE to calculate a reference state
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