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a b s t r a c t

This paper develops a framework for analyzing the performance loss in fixed time interval decision algo-
rithms that are based on observations of time-inhomogeneous Poisson processes, when some parameters
characterizing the observation process are not known exactly. Key to the development is the formulation
of an analytically computable performance metric which can be used in lieu of the true, but intractable,
error probabilities. The proposed metric is obtained by identifying analytical upper bounds on the er-
ror probabilities in terms of the uncertain parameters. Using these tools, it is shown that performance
degrades gracefully as long as the true values of the parameters remain within a neighborhood of the
nominal values used in decisionmaking. The results find direct application to problems of detecting illicit
nuclear materials in transit.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many physical processes of interest are characterized by se-
quences of discrete events occurring randomly in time, modeled
mathematically as point processes [1,2]; an important class of the
latter is the collection of Poisson processes, used to capture the
underlying physics in queueing theory [1], optical communica-
tions [3], neuroscience [4], and nuclear detection [5]. Problems
of decision making between two hypotheses on the basis of Pois-
son (and more general point) process observations have long
been studied [1,2,6–9]. For the Poisson case, the optimal Ney-
man–Pearson rule is known to be given by a Likelihood Ratio Test
(lrt), where the decision is based on comparing a likelihood ratio
formed by the observations against a suitable threshold. The func-
tional form of the likelihood ratio is determined by the intensities
of the Poisson process under the two hypotheses.

Inmany situations, however, these intensities are subject to un-
certainty due to incomplete knowledge of the model. For instance,
Poisson process intensities under the two hypothesesmay be spec-
ified in terms of a parameter vector whose exact value – assumed
to be the same under both hypotheses – may not be accurately
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known. One approach to ensuring acceptable performance of deci-
sion algorithms over a range of parameter values is to apply robust
techniques [7,10,11]. Then, to identify the parameters most cru-
cial for robustness, one needs to understand the relative impact of
parameter uncertainty on decision-making performance. The chal-
lenge now is that performance is measured by error probabilities,
the analytical computation of which is extremely difficult, if not
impossible. This observation sets the stage for the present research,
which aims at establishing an alternate analytically tractable per-
formance metric which can shed light on the above problem. We
note that although the setting described is, at first glance, reminis-
cent of composite hypothesis testing [11], there are some subtle
differences. Indeed, the parameter vector in the framework above
takes the same, albeit imperfectly known, value under both hy-
potheses; Remark 1 describes how this is a natural assumption in
some instances. In contrast, composite hypothesis testing typically
assumes that the parameter vector takes different values under the
two hypotheses in disjoint subsets of parameter space.

The mathematical models and techniques described above find
natural application in the field of nuclear detection. A particularly
challenging instance of the problem of nuclear detection is that of
detecting illicit Special NuclearMaterial (snm) in transit [5,12–14].
Assuming that the moving target is identified, one is asked to de-
cide whether that target is a carrier of an snm radiation source,
using radiation count data from a spatially dispersed network of
inexpensive Geiger counters or scintillators. The critical question
is whether the photons recorded by the counters are solely due
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to ubiquitous background radiation or whether they also con-
tain emissions from a moving source. Since both background and
source photon arrivals at a sensor can be modeled by Poisson pro-
cesses, one is faced with a problem of detecting a Poisson sig-
nal buried inside another signal of similar nature and magnitude,
within a small time interval. Furthermore, one of these processes is
actually time-inhomogeneous, since the perceived source intensity
incident at a sensor varies with the inverse square of the distance
between source and sensor [5].

This decision problem has been studied in a fixed interval
framework [15,16], i.e., when data is collected by sensors over a
fixed time interval, at the end of which a decision is made. The
likelihood ratio has been identified in terms of the problem pa-
rameters, including the motion of the source [15]. Chernoff upper
bounds [17–19] on the error probabilities for the corresponding lrt
have been computed [16], identifying the analytical dependence of
the bounds on the problem parameters. To fully exploit these in-
sights in a field-deployable nuclear detector network system, how-
ever, one needs to recognize and account for the presence ofmodel
uncertainty, a dominant source of which is radiation clutter [13]:
the myriad ‘‘nuisance sources’’ and spatiotemporal environmental
variations whose cumulative effect is to create a dynamic and im-
perfectly modeled background.

In this paper, we study the effect of imperfectly known inten-
sities on a class of decision problems for Poisson processes which
include, as special cases, several scenarios encountered in nuclear
detection. Working with a parametrized family of models, where
each value of the parameter vector corresponds to a specific choice
of intensities, we obtain Chernoff upper bounds on the error prob-
abilities for decision schemes withmismatch [20,21]. By the latter,
we mean that the decision rule is an lrt based on some nominal
model which may be different from the true model governing the
stochastic processes of interest. The Chernoff bounds, or equiva-
lently, the exponents in the bounds, now furnish a performance
measure which can be analytically characterized in terms of the
problem parameters under the true and nominal models. Further,
the exponents are seen to vary smoothly when the true model is
a sufficiently small perturbation about the nominal one, implying
that at least locally, performance degrades gracefully as parame-
ters deviate from their nominal (known) values.

2. Background

We start with a binary hypothesis testing problem. The proba-
bilistic setup consists of a measurable space (Ω,F ) supporting a
k-dimensional counting process Nt , (Nt(1), . . . ,Nt(k)), t ∈

[0, T ], together with probability measures P0 and P1, with P1 ≪

P0, i.e., P1 is absolutely continuous with respect to P0. Here, Pj de-
notes the probability measure under hypothesis Hj, j ∈ {0, 1}. We
assume that the components Nt(i), i ∈ {1, . . . , k}, of Nt are inde-
pendent Poisson processes under each Pj, j ∈ {0, 1}, having inten-
sity βi(t)with respect to P0, and intensityβi(t)+νi(t)with respect
to P1. The functions βi(·) and νi(·) are assumed to be positive, con-
tinuous, and bounded away from zero. The problem is to decide,
based on the observed sample path of Nt over t ∈ [0, T ], between
hypotheses H0 and H1.

Letµi(t) be the ratio of intensities forNt(i) under hypothesisH1
versus H0, i.e., µi(t) , 1 + νi(t)/βi(t). With (τn(i) : n ≥ 1) denot-
ing the jump times of Nt(i), and after defining

Lt(i) , exp


−

 t

0
νi(s)ds

 Nt (i)
n=1

µi(τn(i)), (1)

let {Lt : t ∈ [0, T ]} be the stochastic process

Lt ,

k
i=1

Lt(i). (2)

Fig. 1. Setup for a basic networked fixed-interval moving source detection
scenario. Sensors are indexed by {1, 2, . . .} and receive photons that can be
attributed either to background (thin dashed arrows) or to source radiation (thick
red dashed arrows). Background intensity at sensor i location is characterized by βi ,
and the intensity of the source is determined by the parameter a. The intensity of
this source νi , as perceived at a sensor i, depends on the distance between sensor
and source, ri . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

By convention,
0

n=1(·) = 1. The optimal Neyman–Pearson test
for deciding between H0 and H1 is an lrt given by comparing LT
to a suitably chosen threshold γ > 0, deciding H1 if LT ≥ γ , and
H0 if LT < γ [15]. The performance of the lrt can be measured in
terms of the corresponding error probabilities; that is, the proba-
bility of false alarm PF , P0(LT ≥ γ ) and the probability of miss
PM , P1(LT < γ ). More often than not, computing PF and PM
is analytically intractable, thereby motivating the need for easily
computable upper bounds that can be used as proxies for the cor-
responding probabilities at the expense of some sharpness. It can
be shown [16] that if one explicitly computes

Λ(p) , logE0[L
p
T ]

=

k
i=1

 T

0


µi(s)p − pµi(s)+ p − 1


βi(s)ds,

for p ∈ R, then PF and PM admit the Chernoff bounds

PF ≤ exp

inf
p>0

[Λ(p)− p log γ ]


,

PM ≤ exp

inf
p<1

[Λ(p)+ (1 − p) log γ ]


.

(3)

The availability of the bounds (3) in analytical form greatly facili-
tates the implementation of the test in many practical situations.
For example, these bounds can be used [16] to devise a procedure
for selecting the threshold γ so that the lrt {LT ≥ γ } conforms
with desired performance requirements, typically characterized by
the probability of false alarm PF being less than or equal to a desired
level α.

Tomotivate the general treatmentwhich follows,webeginwith
a concrete example of using the framework described above to de-
tect a moving nuclear source (see Fig. 1). At the initial time t = 0,
a moving vehicle (target) which may be a source of snmwith min-
imum activity a > 0, is identified. The target’s trajectory over a
fixed time interval [0, T ] is assumed to be known. This target is
within sensing range of a spatially dispersed network of k radia-
tion sensors, some of which may be mobile. For i ∈ {1, . . . , k},
Nt(i) represents the number of counts registered at sensor i up to
and including time t ∈ [0, T ], while βi(t) represents the intensity
at time t due to background at the spatial location of sensor i. In
keeping with the inverse square fall-off with distance for source
intensity – as is common in the relevant literature [5] – we take
χ > 0 as a sensor-specific cross section coefficient and ri(t) to be
the distance at time t between the target and sensor i, and define
the perceived source intensity at sensor i at time t as

νi(t) =
χa

2χ + ri(t)2
. (4)

The goal is to decide, at the fixed time T , whether the counts re-
corded by the collection of sensors correspond solely to back-
ground radiation (hypothesis H0), or whether they also contain
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