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a b s t r a c t

Repetitive processes are a class of 2D systems that operate over a subset of the upper-right quadrant of
the 2D plane. Applications include iterative learning control where experimental verification has been
reported based on a linear time-invariant model approximation of the dynamics. This paper considers
discrete nonlinear repetitive processes with Markovian switching and applies, as one application, the
resulting stability theory to iterative learning control for a class of networked systemswhere time-varying
dynamics arise.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The systems considered in this paper repeat the same finite
duration operation over and over again. Each repetition is termed
a pass and the duration the pass length. One industrial application
is long-wall coal mining where the coal is cut by a machine that
passes along the coal face and the objective is to maximize the
volume of coal cut without penetrating the coal/stone interface.
During each pass the machine rests on the pass profile cut during
the previous pass, i.e., the height of the stone/coal interface above
some datum line. Once a pass is complete, the machine is returned
to the starting location and then pushed across to rest on the newly
cut floor profile ready for the start of the next pass.

The geometry of the long-wall coal mining process means that
the previous pass profile acts as a forcing function on the next
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pass profile and hence contributes to its dynamics. This interaction
between successive pass profiles can result in oscillations that
increase in amplitude from pass-to-pass. These oscillations are the
distinguishing feature of repetitive processes [1] and they cannot
be removed by standard control action. Instead these processes
must be treated as systems operating over a subset of the upper-
right quadrant of the 2D plane.

This paper uses the notation yk(t), 0 ≤ t ≤ T , where y is the
scalar or vector valued variable, k ≥ 0, is the pass number and
T < ∞ is the pass length. Given that these process operate over the
domain defined by (k, t) ∈ [0, ∞] × [0, T ], boundary conditions
need to be specified for k = 0 and t = 0, i.e, the starting, or initial,
condition on each pass and the initial pass profile respectively. The
detailed modeling of long-wall coal mining as a repetitive process
is given in [1], which also references the original work and details
the modeling of other repetitive processes, such as forms of metal
rolling.

In physical examples, such as long-wall coal mining, the inter-
action between success pass profiles is part of the evolution of
the dynamics. Of direct relevance to the focus of this paper are
applications where the repetitive process structure arises from
the control action applied. Consider the commonly encountered
industrial taskwhere a gantry robot is undertaking a pick and place
operation over and over again and the sequence of operations is:
(i) collect an object from a specified location, (ii) transfer it over a
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finite duration, (iii) deposit it at a fixed location or onto a moving
conveyor, (iv) return to the starting location, and (v) repeat (i)–(iv)
as many times as required or until a stop for maintenance is re-
quired. The transfer of each object can be viewed as completing a
pass over the finite pass length and once complete, all information
generated is available to update the control law to be applied on
the next pass.

Iterative Learning Control (ILC), see the survey papers [2,3], has
been developed for applications such as the gantry robot operation
outlined briefly above. The control law is usually computed in
the resetting time between successive passes as a function of the
control used on the previous pass and a corrective term computed
using information from the previous pass (also termed a trial
in some literature) input and error or a finite number thereof.
Suppose that a reference signal, yref (t) that can be realized by
the gantry robot is given and on pass k let yk(t), 0 ≤ t ≤ T ,
be the pass profile and uk(t) the control input. Then ek(t) =

yref (t) − yk(t) is the error on this pass and the ILC design problem
to force tracking of the reference can be formulated as control law
design to achieve convergence, as measured by the norm on the
underlying function space, to zero of the error sequence {ek}k and
convergence of the input sequence {uk}k to u∞, which is termed
the learned control. Another example where the repetitive process
structure arises as a result of control action or the iterative solution
method is nonlinear dynamic optimal control problems based on
the maximum principle (described in [1] with references to the
original work).

Given the possibility of oscillations that increase in amplitude
from pass-to-pass, stability of a repetitive process is defined as
requiring that a bounded initial pass profile produces a bounded
sequence of pass profiles, defined in terms of the norm on the
underlying function space, either over the finite pass length or for
all possible values of this parameter. If the dynamics are linear
then an abstract model in a Banach space setting can be used [1]
where the conditions are expressed in terms of the bounded linear
operator describing the contribution of the previous pass profile
to the dynamics of the next. This theory has been applied to
ILC design, assuming that the dynamics are time-invariant, with
experimental verification [4] on a gantry robot that replicates the
pick and place operation discussed briefly above.

A significant proportion of the literature on the control of 2D
systems is based on a linear model of the dynamics. Comparatively
little work has been reported on the stability of nonlinear or linear
time-varying examples, see, for example, [5]. In many possible
applications for repetitive processes/2D systems, the dynamics are
nonlinear and the new results in this paper address this issue with
an application to ILC where it is shown that control law design
by Linear Matrix Inequalities (LMIs) is possible for cases where
linearization of the nonlinear dynamics about an operating point
is possible. One more recent addition to applications for repetitive
process control theory where the use of a nonlinear model will be
required is laser metal deposition processes [6].

In the application of control systems, failures in operation can
arise and the representation used in this paper for this problem is
based on random switching. In particular, a process with failures is
modeled by a state-space model with jumps in the parameter val-
ues and/or structure governed by aMarkov chainwith a finite set of
states, often termedMarkovian jump systems or systemswith ran-
dom structure, see, for example, [7]. Results on the development of
control theory for Markovian jump systems, which address issues
such as stability, optimal and robust control problems, in the stan-
dard, or 1D, case can be found in, for example, [8–13]. These results
cannot be applied to 2D systems. Progress on the development of
a systems theory for 2D linear systems with Markovian jumps is
reported in [14,15] and references therein.

This paper considers nonlinear and time-varying discrete
repetitive processes where, with applications such as ILC over a

network in mind, the dynamics also have Markovian switching.
The property of exponential stability in themean square is defined
and characterized, leading to results on stabilization and H∞

control with an application to ILC. Moreover, the results are
developed for time-invariant dynamics but have an immediate
extension to the time-varying case. As in other control systems
areas, it is to be expected that progress towards control law design
will for physical examples with nonlinear dynamics make use
of particular features in the corresponding models. Exactly this
feature is present in the ILC design analysis that forms the second
major part of this paper.

2. Process description and stability theory

If the dynamics of a repetitive process are linear then stability
analysis can proceed from the abstract model and the task for a
given example is to obtain conditions that can be tested. Let the
pass profile yk ∈ ET where ET is a Banach space. Then the pass-
to-pass dynamics of a linear repetitive process with constant pass
length T < ∞ are described by yk+1 = LTyk, k ≥ 0, where LT
is a bounded linear operator mapping ET into itself. In this case LT
is a convolution operator over the finite interval t ∈ [0, T ] and
contributions that enter on the current pass can be represented by
adding a term that lies in a linear subspace of ET .

The stability problem for repetitive processes is that the pass
profile sequence {yk}k≥1 for a given initial profile y0 can contain
oscillations that increase in amplitude with k, as discussed in
the previous section for the coal cutting example. Bounded-Input
Bounded-Output (BIBO) stability for these processes is therefore
defined, in terms of the norm on the underlying function space,
as the requirement that a bounded initial pass profile produces
a bounded sequence {yk}k≥1, either over the finite pass length or
else independent of this parameter. The latter property is the most
general case and for dynamics described by the abstract model,
i.e., by LT , requires the existence of real numbers M∞ > 0 and
λ∞ ∈ (0, 1), which are independent of T , such that ∥LkT∥ ≤ M∞λk

∞

where ∥ · ∥ denotes both the norm on ET and the induced operator
norm.

The vast majority of the systems theory currently available for
repetitive processes is for linear deterministic examples or those
forwhich such a description is an adequate basis for initial analysis.
In this paper, the process state-space model considered is

xk+1(t + 1) = F1(xk+1(t), yk(t), uk+1(t), wk(t), rk(t)),
yk+1(t) = F2(xk+1(t), yk(t), uk+1(t), wk(t), rk(t)),
0 ≤ t ≤ T , k = 0, 1, 2, . . . (1)

where the integer T denotes the pass length and on pass k, xk(t) ∈

Rnx is the current pass state vector, yk(t) ∈ Rny is the pass profile
vector, uk(t) ∈ Rnu is the control input vector, wk(t) ∈ Rnw is
the disturbance vector, F1 and F2 are nonlinear functions, r(t) is
the homogeneous Markov chain whose state-space is the set of
integers N = {1, 2, . . . , ν} and the transition probabilities are
given by

P[rk(t + 1) = j|rk(t) = i] = πij,

P[rk+1(t) = j|rk(t) = i] = ωij.

The boundary conditions are the pass state initial vector
sequence and the initial pass profile and in this paper have the form

xk+1(0) = dk+1, k ≥ 0,

y0(t) = f (t), 0 ≤ t ≤ T − 1, (2)

where the entries in the n × 1 vector dk+1 are known constants
and f (t) is anm×1 vector whose entries are known functions of t .
Also the presence of the time shift on the left-hand side of the first
equation in (1) means that the state vector xk(t) is defined over
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