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A periodic scheduling problem for sensor networks with communication constraints is considered for
state estimation. The solvability of the problem is first discussed and a necessary and sufficient condition
is presented based on the notion of periodic detectability. Since the calculation of the average prediction
error variance requires the computation of the symmetric periodic positive-semidefinite stabilizing
(SPPS) solutions to the periodic Riccati equations, a moving approximate cost function is proposed, which
gradually converges to the exact cost function. Also, it is shown that the upper bound of the approximation
error is independent of the SPPS solutions and converges to zero exponentially. Based on these results,
a branch and bound based algorithm is proposed to compute the optimal periodic schedule, and the
idea is to iteratively trim the set of schedules that are potentially robust optimal with respect to the
approximation error. If the optimal schedule is unique, the algorithm solves the periodic scheduling
problem by exploring a finite number of nodes. Moreover, given an arbitrary nonzero suboptimality
specification, the algorithm results in a suboptimal schedule set containing all the optimal schedules at a
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manageable computation effort. A numerical example is presented to illustrate the proposed results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of wireless technology, applications of wireless
sensor networks have emerged in a wide range of areas [ 1-4]. The
adoption of these sensor networks provides more informative ac-
cess to system information, and has brought on new opportunities
to improve the performance of dynamic systems.

In this context, sensor scheduling problems for state estimation
have received considerable attention in recent years. The main ob-
jective is to minimize cost functions related to the state estimation
error, while the difficulty is mainly caused by the mixed integer na-
ture of the problem and the constraints introduced by the sensor
network.

Finite-horizon scheduling problems have been extensively
studied in the literature. Optimal scheduling problems with un-
correlated and correlated sensor measurements were respectively
considered in [5,6], and suboptimal solutions were obtained by
solving relaxed convex optimization problems. In [7], a sensor
scheduling problem with state-dependent measurement noise
was formulated into a model predictive control problem, and a
fast and optimal sensor scheduling algorithm was proposed. A
two-step scheduling algorithm for networked sensor systems with
heterogeneous sensors was proposed by [8], in which the sensor
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types and sensors of the same type were scheduled separately.
In [9], an optimal partial broadcasting problem was considered,
and a good-sensor-late-broadcast rule was proposed. In addition,
it was shown that finite-horizon problems can be formulated as
tree search problems [ 10], and different optimal/suboptimal prun-
ing methods were proposed to reduce the computational complex-
ity [11-13].

On the other hand, infinite-horizon scheduling problems are
generally difficult to consider. One interesting exception was ex-
plored in [14], where a stochastic sensor selection algorithm was
proposed to compute the optimal sensor selection distribution by
minimizing the upper bound of the expected steady-state perfor-
mance.

Anintermediate class of problems between finite-horizon prob-
lems infinite-horizon problems is periodic scheduling problems.
The optimal periodic schedules not only guarantee the steady-
state estimation performance, but also provide insights of the
optimal infinite-horizon aperiodic problems as well, since results
indicated that some periodic phenomenon appears in optimal ape-
riodic schedules [15]. Moreover, the optimal schedules with finite
periods can be computed offline and implemented online for an
infinite time horizon. In [16], a periodic scheduling problem for
heterogeneous sensor networks was formulated and a method to
compute the optimal scheduling period was proposed. An optimal
periodic scheduling problem for two sensors subject to communi-
cation and duty cycle constraints was considered by [17], where
the sensors were assumed to send several most recent measure-
ment data to the estimator, and the optimal periodic schedule was
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explicitly characterized for the first time. However, due to the com-
binatorial nature of these optimization problems, explicit optimal
periodic schedules are normally not possible to characterize, espe-
cially for networks composed of multiple sensors. In addition, since
the “initial value” of the steady-state error covariance is unknown
and schedule dependent, the traditional tree search approaches
and convex relaxation approaches utilized in finite-horizon prob-
lems are no longer applicable, making it cumbersome to design nu-
merical optimization algorithms.

In this paper, the optimal periodic multiple-sensor scheduling
problem is considered. The objective is to minimize the average
state prediction error variance for linear Gaussian systems, and
the constraint takes into account of the communication resource
limitation. The contributions of the obtained results are threefold.

(1) The solvability of the periodic scheduling problem is discussed,
and a necessary and sufficient condition is provided, which is
numerically verifiable.

(2) A moving approximate cost function is proposed. Unlike the
exact cost function, this function does not rely on the symmet-
ric periodic positive-semidefinite stabilizing (SPPS) solutions
to the periodic Riccati equations (PREs), and converges to the
exact cost function asymptotically. In addition, an upper bound
of the approximation error is obtained, which does not depend
on the SPPS solutions and exponentially converges to zero.
Based on the moving approximate cost function and the upper
bound of the approximation error, a branch and bound based
algorithm is proposed to identify the optimal periodic sched-
ules without solving the PREs. Different from the resultsin[13],
the lower bound of the objective function is designed based
on the monotonicity properties of the Riccati equation solu-
tions, and does not rely on the simultaneous diagonalization
of the “sensor information matrices”. It is shown that, given
the uniqueness of the optimal schedule, the optimal solution
can be computed by searching a finite number of nodes. Also,
provided an arbitrary nonzero suboptimality specification ex-
ists, a set of suboptimal schedules containing all optimal sched-
ules can be identified with known computational complexity
bound.
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The rest of the paper is organized as follows. Section 2 presents the
problem formulation, the solvability condition, and preliminaries.
In Section 3, the moving approximate cost function is proposed and
its properties are discussed. The branch and bound based algorithm
is presented in Section 4, and some implementation issues are
discussed in Section 5. Section 6 presents a numerical example, and
some concluding remarks are given in Section 7.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider the system in Fig. 1. The process is linear time invariant
and evolves in discrete time:

x(k+ 1) = Ax(k) + w(k), (1)

where x(-) is the state, and w(-) is the noise input, which is zero-
mean Gaussian with covariance Q > 0.! We assume that (4, Q)
is stabilizable. The initial value x(0) of the state is also zero-mean
Gaussian, with covariance Py. The state information is measured
using a network of sensors via the output equations:

yi(k) = Gix(k) + vi(k), (2)

1 In this paper, the notation ¥ > (>)® and ¥ —® > (>)0represents that matrix
¥ — @ is positive definite (positive semidefinite), ¥ and & being two symmetric
matrices.
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Fig. 1. Block diagram of the overall system.

where v; is zero-mean Gaussian with covariance R; fori € {1, 2,
..., M}, M being the number of sensors, and v; and v; are uncor-
related if i # j. In addition, x(0), w, and v; are uncorrelated. Con-
sidering limited communication resources, assume that only one
communication channel is available, and that only one sensor is
allowed to access the channel at each time instant to transfer the
measurement data. The sensors are chosen according to a periodic
schedule s with period N, which is denoted as

s = [s(0),s(1),...,s(N — 1],

where s(k) takes values from {1, 2, ..., M}, indicating the index of
the kth sensor scheduled within the N period. Assume that N > M.
With a little abuse of notation, for k > N — 1, we still use s(k) to
denote the sensor used at time k, which is self-evident due to pe-
riodicity.

After updating the measurement, the optimal prediction x(k)
of x(k) is calculated based on the collected information {ysq)(0),
Ysay(1), ..., ¥sa—1(k — 1)}, and the state estimation x(k) is
computed according to [18]:

X(k) = x(k) + P(k)Cy4 [Csy P(K)Clgy + Rt~

X [Ysy (k) — CsoyX(K)],
where
P(k) = E[e(k)e’(k)], (3)
and e(k) = x(k) — x(k). This estimate minimizes the prediction
error covariance matrix P (k).

Denote Sy as the set of periodic schedules with period N. We
have the following definition.

Definition 1. A periodic schedule s € Sy is said to be well defined
if there exists a linear periodic filter K., such that the closed-loop
state matrix A — K Csk) is periodically stable [19].

Denote Sy as the set of well-defined periodic schedules with

period N. For a given schedule s € Sy, define the average prediction
error variance

N T
Js) = Jim — > E[¢ (ke(k)]
k=1

N
= lim — Tr{P(k)}. 4
Jim ; r{P (k) (4)
In this work, the following scheduling problem is considered:
minJ(s). (5)
seSN

Because the schedules are integer-valued functions, the opti-
mization problem is nonconvex and of combinatorial nature. This
type of problem is generally NP-complete, and analytical char-
acterization of optimal schedules for general sensor networks is
normally not possible. To exactly solve this problem, solutions to
the PREs induced by all schedules in Sy need to be considered,
which requires the solution of MM algebraic Riccati equations cor-
responding to the lifted periodic systems [20], and is computation-
ally prohibitive. In this work, the objective is to design an iterative
algorithm so that the optimal schedule can be numerically identi-
fied without computing the solutions to the PREs.
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