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a b s t r a c t

The general feedback controller for a class of control variable delayed systems has recently been shown to
be the general linear functional of an extended state of the system. Using only plant input/output data, this
work formulates amemoryless observer for the reconstruction of this extended state. It is also shown that
the observer and the feedback controller can be independently designed in conformitywith the separation
principle.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider a control variable delayed system,

Σd : ẋ(t) = A0x(t) + B0u(t) + B1u(t − h) (1.1)
y(t) = C0x(t), (1.2)

with initial condition

x(0) = φ0
∈ Rn, (u0, u(0)) ∈ Cad([−h, 0); Rm) × Rm. (1.3)

Here, t is time, the dot on x represents derivative with respect to
t, h > 0 is the time lag, u(t) ∈ Rm and x(t) ∈ Rn. Also, A0 ∈

Rn×n, B0, B1 ∈ Rn×m where A0 ≠ 0 and B1 ≠ 0. For simplicity,
we consider u∈ Cad([−h, ∞); Rm), the class of Rm-valued piece-
wise continuous functions with the property that at a point of
discontinuity, an element of Cad([−h, ∞); Rm) has left limit and
right continuity. For t ≥ 0, ut ∈ Cad([−h, 0); Rm) is defined by
ut(θ) = u(t + θ) where θ ∈ [−h, 0). Given the initial condition
(1.3), the solution of (1.1) is an absolutely continuous function that
satisfies (1.1) for t > 0.

Define TA0 : Cad([−h, 0); Rm) → Rn by TA0 [gt ] =
 0
−h e

−(r+θ)A0

gt(θ)dθ . It is well known that under z(t) = x(t) + TA0 [B1ut ],
namely,

z(t) = x(t) +

∫ 0

−h
e−(r+θ)A0B1ut(θ)dθ, (1.4)

∗ Tel.: +233 024 315 7188; fax: +233 021 772705.
E-mail address: yawvifiagbedzi@yahoo.com.

(1.1) is reduced to the ordinary system, ż(t) = A0z(t) + Bu(t)
where B = B0 + e−hA0B1. Assume that (A0, B) is controllable and
choose K ∈ Rm×n such that A0 − BK is a stability matrix. Then
according to [1],

u(t) = −Kz(t) (1.5)

feedback stabilizes (1.1). That this result is in error was brought to
light by the numerical computations in [2] where the integral in
(1.4) is approximated by numerical quadrature. There, it is shown
that the closed loop systemunder (1.5) becomes unstablewhen the
norm of the partition of the interval [−h, 0] goes to zero. Following
this result, we have shown in [3] that the closed loop instability
observed in [2] is the result of inputs originating from ker TA0 . This
closed loop instability, labeled as the hidden input problem in [3],
was resolved in [4] under a new transformation theory called the
stable transformation theory. According to the stable transformation
theory, the general feedback stabilizing controller for (1.1) is a
linear functional of the extended state (x(t), zF(t)) ∈ Rn

× Rn

where zF(t) is a new transformation variable to be defined in (2.2).
That is,

u(t) = −K1x(t) − K2zF(t) (1.6)

is the general controller for (1.1) where K1, K2 ∈ Rm×n. The aim
of this work is to reconstruct the extended state (x(t), zF(t)) from
the system input/output data (u(t), y(t)) where t > 0 in order to
realize (1.6) as an observer based feedback controller.

The change of structure of the control law from (1.5) to (1.6)
renders obsolete the existing literature on the observation of z(t)
as a prelude to implementing the feedback control law, (1.5). To
illustrate, [5] reconstructs z(t) in order to generate the controller
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(1.5); however, the theory therein does not appear capable of easily
generating x(t). What is more, the need to implement delayed
control terms in the construction of the observer [5] is undesirable.
A second illustration is provided by [6] which also reconstructs
z(t) in order to implement (1.5); the novelty therein appears
to be the adoption of a frequency domain approach based on a
Diophantine type equation. Again, their approach does not appear
able to easily yield x(t). Thus, our contention that (1.6), rather
than (1.5), is the general feedback controller places this paper in
a ground breaking position since the need to recreate the (new)
transformation variable, zF(t) as well as x(t) has hitherto not
arisen.

Section 2 gives a summary of the relevant background results
from [3,4]. Section 3 contains the principal result, namely the
memoryless observer. This is illustratedwith a numerical example.
Section 4 contains the observer based general feedback controller
and the validity of the separation property [7, p. 271]. Concluding
remarks are made in Section 5.

2. Background results

Let ν0 ≥ 0be specified anddefineC−

−ν0
= {λ ∈ C : Re λ < −ν0}

as the open left half of the complex plane bounded by Re λ = −ν0.
Define the class of n × n real valued stable matrices as H =
M ∈ Rn×n

: |λIn − M| = 0 ⇒ λ ∈ C−

0


. Relevant background re-

sults from [4] are summarized below where it is assumed that
F ∈ H.

Lemma 2.1. Let F ∈ Rn×n where F ≠ A0. Define

GF(θ) = e−(h+θ)F, −h ≤ θ ≤ 0. (2.1)

If x(·) denotes the solution of Σd, then the transformation

zF(t) = x(t) + TF [B1ut ] = x(t) +

∫ 0

−h
GF(θ)B1ut(θ)dθ (2.2)

reduces the initial value problem (1.1), (1.3) to the delay-free initial
value problem:

Σ0 : żF(t) = FzF(t) − (F − A0)x(t) + Bequ(t) (2.3)

zF(0) = φ0
+

∫ 0

−h
e−(h+τ)FB1u0(τ )dτ (2.4)

where

Beq = B0 + e−hFB1. (2.5)

Lemma 2.2. Let u∈ Cad([−h, ∞); Rm) be given and x(·) ∈ C((0,
∞); Rn). If zF(·) is an Rn-valued absolutely continuous function on
(0, ∞) satisfying (2.2) and (2.3), then x(·) satisfies (1.1).

Theorem 2.1. The delayed control function, B1ut , admits the decom-
position

B1ut(θ) = G′

F(θ)W−1
F

[zF(t) − x(t)] + wc
t (θ) (2.6)

where wc
t ∈ ker TF ∩Cad([−h, 0); Rn),

WF :=

∫ 0

−h
GF(θ)G′

F(θ) dθ > 0 (2.7)

and ′ denotes matrix transposition. In particular,

B1u(t − h) = W−1
F

[zF(t) − x(t)] + wc(t − h). (2.8)

We have also shown (see [4]) that wc
t ∈ ker TF admits the

representation

wc(t − h) =


wc

0(t − h) if 0 ≤ t < h
eh⌊t/h⌋Fwc

0(θ0) if t ≥ h (2.9)

where wc
0 is the initial segment wc

t on [−h, 0), ⌊·⌋ is the greatest
integer function and θ0 ∈ [−h, 0). The next lemma provides an
estimate of wc(t − h), t ≥ 0.

Lemma 2.3. Let F ∈ H. If wc
t ∈ ker TF , then there exists a constant

kw > 0 such that

‖wc(t − h)‖ < kwe−νF t , t ≥ 0 (2.10)

for some νF > 0.

Proof. Let σ(F) denote the spectrum of F. Recall that F ∈ H ⇒

σ(F) ⊂ C−

−νF
for some νF > 0. Furthermore, there exists a constant

cF > 0 such thatetF ≤ cFe−νF t , t ≥ 0. (2.11)

Starting from the standard inequality t/h − 1 < ⌊t/h⌋ ≤ t/h,
multiplication by νFh gives νF(t − h) < νFh⌊t/h⌋ ≤ νFt . Then
exponentiation gives eνF(t−h) < eνFh⌊t/h⌋ or e−νFh⌊t/h⌋ < e−νF(t−h).
With the help of this inequality and (2.11), we deduce that

‖eF⌊t/h⌋h
‖ ≤ cFe−νF⌊t/h⌋h

≤ cFe−νF(t−h), t ≥ 0. (2.12)

Now, consider wc
t ∈ ker TF . For t ≥ h, application of the second

case of (2.9) and (2.12) gives the estimate

‖wc(t − h)‖ ≤ ‖ehF⌊t/h⌋
‖ ‖wc

0(θ0)‖ ≤ kce−νF t (2.13)

where kc = cF eνFh‖wc
0(θ0)‖. Let µc > max


1, eνFh

‖wc
0‖[−h,0]
kc


where ‖wc

0‖[−h,0] = sup−h≤θ≤0 ‖wc
0(θ)‖. Then µc > 1 and

‖wc
0‖[−h,0]eνFh < µckc . Since µc > 1, (2.13) can be weakened to

the form

‖wc(t − h)‖ < µckce−νF t , t ≥ h. (2.14)

For 0 ≤ t < h, observe that e−νF(t−h) > 1. Then the first part of
(2.9) yields

‖wc(t − h)‖ ≤ sup
0≤t≤h

‖wc
0(t − h)‖ = ‖wc

0‖[−h,0]

< ‖wc
0‖[−h,0]e−νF(t−h)

= ‖wc
0‖[−h,0]eνFhe−νF t

< µckce−νF t . (2.15)

Putting (2.14) and (2.15) together proves (2.10) on defining kw :=

µckc . �

Using (2.8), one can embed the given delayed system in an
extended state space as follows:

Theorem 2.2. Let x(t) =


x(t)
zF(t)


and Rc(t − h) =


wc (t − h)

On×1


where

On×1 is the n × 1 matrix of zeros. Then Σd can be embedded in the
extended system

d
dt

x(t) = AFx(t) + BFu(t) + Rc(t − h) (2.16)

where

AF =

[
A0 − W−1

F W−1
F

−(F − A0) F

]
, BF =


B0
Beq


. (2.17)
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