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a b s t r a c t

We show that control systems with an analytic semigroup and control and observation operators that
are not too unbounded have a Hankel operator that belongs to the Schatten class Sp for all positive p.
This implies that the Hankel singular values converge to zero faster than any polynomial rate. This in
turn implies fast convergence of balanced truncations. As a corollary, decay rates for the eigenvalues of
the controllability and observability Gramians are also provided. Applications to the heat equation and a
plate equation are given.
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1. Introduction

The Hankel singular values σk of a transfer function G ∈ H∞

capture how well the transfer function can be approximated by
stable transfer functions of smaller McMillan degree. For all stable
transfer functions Gn of McMillan degree n we have

σn+1 ≤ ‖G − Gn‖H∞ ,

and there always exist stable transfer functionsGn ofMcMillan de-
gree n (for example those resulting from balanced truncation [1])
such that

‖G − Gn‖H∞ ≤ 2
∞−

k=n+1

σk.

We are interested here in the case where G is irrational (and
thus has infinite McMillan degree). The above estimates show that
a necessary condition for convergence of finite McMillan degree
approximations is compactness of the Hankel operator of G and
that a sufficient condition is nuclearity (i.e. membership of the
trace class) of the Hankel operator of G. These two conditions
are discussed in [2]. However, the estimates provide more
information: if we have a convergence rate of the Hankel singular
values, then these provide a convergence rate for the (e.g. balanced
truncation) approximations. For delay equations this issue is
treated in detail in [3]. For discrete-time infinite-dimensional
systems this is treated in [4]. For applications in random matrix
theory the decay rate of Hankel singular values (under for control
theory applications unreasonably strict assumptions) is studied
in [5]. For finite-dimensional systems an investigation of the decay
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of Hankel singular values was carried out in [6], where also the
decay of the eigenvalues of the systems Gramians is studied.

In this article we show that for control systemswith an analytic
semigroup and control and observation operators that are not too
unbounded, the Hankel singular values satisfy
∞−
k=1

σ
p
k < ∞,

(i.e. the Hankel operator is in the Schatten class Sp) for all p > 0.
This implies thatnqσn → 0 for all q > 0, so that theHankel singular
values of such systems decay very rapidly. The proof of this fact is
based on the characterization of Schatten class Hankel operators in
terms of their transfer function belonging to a certain Besov space
which was proven independently by Peller [7] and Semmes [8] for
the case 0 < p < 1 most relevant here (and earlier by Peller [9,10]
for the case p ≥ 1).

In Section 2 we precisely state this characterization theorem
and provide the needed definitions. In Section 3 we then state
exactly which control systems we study and give some partial
differential equation examples. Themain result and its proof follow
in Section 4. As corollaries in that section we also obtain results on
the decay rate of the eigenvalues of the systems Gramians.

2. Bergman spaces, Besov spaces and the characterization
theorem

The Bergman space Ap(C+

0 ; B) with p > 0, C+

0 the open right
half complex plane and B a Banach space consist of the analytic
functions f : C+

0 → B that satisfy∫
∞

0

∫
∞

−∞

‖f (x + iy)‖p
B dy dx < ∞.
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The Bergman kernel (for the right half plane) is defined onC+

0 ×C+

0
as

K(z, w) :=
1

(z + w̄)2
. (1)

The weighted Bergman space Ap,r(C+

0 ; B) with p > 0 and r > −
1
2

consists of those analytic functions f : C+

0 → B that satisfy∫
∞

0

∫
∞

−∞

‖f (x + iy)‖p
BK(x + iy, x + iy)−r dy dx < ∞,

or equivalently∫
∞

0

∫
∞

−∞

‖f (x + iy)‖p
Bx2r dy dx < ∞,

(see Semmes [8]). The Besov space Bp(C+

0 ; B) consists of the
analytic functions f : C+

0 → B that satisfy

f

2
p


∈ Ap(C+

0 ; B).

Here f

2
p


is a fractional derivative. Equivalently (without having

to deal with fractional derivatives) the Besov space Bp(C+

0 ; B)

consists of the analytic functions f : C+

0 → B that satisfy

f (n)
∈ Ap, np2 −1(C+

0 ; B),

for some integer n > 1
p (equivalently, for all n > 1

p ). See e.g.
Semmes [8] or Peller [7, page 490] for this definition of Besov
spaces.

Remark 1. For future reference we note that with K the Bergman
kernel from (1), we have for fixed w ∈ C+

0 that

K(·, w)η ∈ Bp(C+

0 ),

for all η > 0 and all p > 0. This is (up to notation) the same
statement as [8, Lemma 5]. Defining for η > 0 and w ∈ C+

0 the
function f : C+

0 → C as

f (z) := K(z, w)η,

we then see that any analytic function g : C+

0 → B with the
property that for all n ∈ N there exists an Mn > 0 such that for
all s ∈ C+

0

‖g(n)(s)‖B ≤ Mn|f (n)(s)|, (2)

belongs to Bp(C+

0 ; B) for all p > 0.

Recall that the Schatten class Sp consists of those operators
whose singular values form an ℓp(N) sequence. Also recall that the
Hardy spaceH2(C+

0 ; H )withH a separable Hilbert space consists
of the analytic functions f : C+

0 → H that satisfy

sup
x>0

∫
∞

−∞

‖f (x + iy)‖2
H dy < ∞,

and carries the obvious inner-product. By taking non-tangential
limits, H2(C+

0 ; H ) can be identified with a closed subspace
of L2(iR; H ). Similarly, H2(C−

0 ; H ) can be identified with the
orthogonal complement of H2(C+

0 ; H ) in L2(iR; H ). The Hardy
spaceH∞(C+

0 ; B) consists of all bounded analytic functionsC+

0 →

B and carries the obvious norm. By taking non-tangential limits,
H∞(C+

0 ; B) can be identified with a closed subspace of L∞(iR; B).
We recall that a function in H∞(C+

0 ; L(U , Y )) – using the above
identification – induces by multiplication a bounded operator
from L2(iR; U ) to L2(iR; Y ). The Hankel operator associated
with this H∞(C+

0 ; L(U , Y )) function is obtained by restricting

this multiplication operator to H2(C−

0 ; H ) and projecting onto
H2(C+

0 ; H ) (where again the above identifications are used).
The following theorem that follows from Peller [7] and Semmes

[8] characterizes Schatten class Hankel operators in terms of their
transfer functions.

Theorem 2. Let U and Y be separable Hilbert spaces at least one
of which is finite-dimensional and let p > 0. The function G ∈

H∞(C+

0 ; L(U , Y )) has an Sp Hankel operator if and only if G ∈

Bp(C+

0 ; L(U , Y )).

Proof. In Semmes [8] and Peller [7] the case where U = Y =

C can be found. Peller [11, Corollary 6.9.4] includes the general
case of separable Hilbert spaces U and Y . This is for the disc
case, but as in [7, page 490], the half-plane case can be reduced
to the disc case. The condition in [11, Corollary 6.9.4] is that
G ∈ Bp(C+

0 ; Sp(U , Y )). This only leaves to show that G ∈

Bp(C+

0 ; L(U , Y )) is equivalent to G ∈ Bp(C+

0 ; Sp(U , Y )) when
either U or Y is finite-dimensional.

Let n ∈ N and denote the singular values of G(n)(s) (ordered by
magnitude) by µk(s). At most m := min{dimU , dimY } of these
are nonzero. We have

µ1(s)p ≤

m−
k=1

µk(s)p ≤ mµ1(s)p.

It follows that

‖G(n)(s)‖p
L(U ,Y ) ≤ ‖G(n)(s)‖p

Sp(U ,Y ) ≤ m‖G(n)(s)‖p
L(U ,Y ).

The result then follows from the definition of Besov space. �

3. Analytic control systems

We recall that associatedwith a strongly continuous semigroup
on a Hilbert space X there is a scale of fractional power Hilbert
spaces Xγ with γ ∈ R. See e.g. Staffans [12, Section 3.9], Pazy
[13, Section 2.6], Engel and Nagel [14, Section 2.5].

In this article we consider dynamical systems of the form

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where A generates an exponentially stable analytic semigroup, B ∈

L(U , Xβ), C ∈ L(Xα, Y ), D ∈ L(U , Y ) with α − β < 1 and
at least one of U and Y is finite-dimensional. More information
on such a system can be found in e.g. Staffans [12, Section 5.7]
where among other things it is shown that the transfer function
is well defined by the formula G(s) = C(sI − A)−1B + D. In
Curtain–Sasane [2] it is shown that the Hankel operator of such a
system (with the additional condition that bothU andY are finite-
dimensional) is in S1. In this article we will show – by a completely
different method – that the Hankel operator of such a system is in
fact in the Schatten class Sp for all p > 0.

We give a couple of example of such systems.
Consider the one-dimensional heat equation with Neumann

(heat flux) control and Dirichlet (temperature) observation at one
end and zero Dirichlet condition at the other end (to ensure that
the system is exponentially stable):

wt(t, ξ) = wξξ (t, ξ), wξ (t, 0) = u(t), w(t, 1) = 0,
y(t) = w(t, 0).

We choose as state space X = L2(Ω) with Ω = (0, 1). We then
have

X1 = {f ∈ W 2,2(Ω) : f ′(0) = 0, f (1) = 0},
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