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a b s t r a c t

In this paper,we study stability of an optimal control for amulti-dimensional heat equationwith a singular
potential term. A family of perturbed optimal control problems with lower power singular potentials are
formulated. It is shown that when the lower powers tend to the critical power two, the optimal controls
are convergent to the optimal control of the original system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The optimal control theory deals with problems of finding a
control law for a given system such that a certain optimality cri-
terion is achieved. This theory has tremendous applications in
science and engineering. There are huge works attributed to op-
timal control for lumped parameter systems. The optimal con-
trol theory for systems governed by partial differential equations
(PDEs) is one of the main research topics in distributed parameter
systems control since beginning of 1960s. In the last several years,
some significant progresses have been made on optimal control
problems of PDEs, we refer to [1–3] and many references therein.
However, the optimal control and optimal cost of a controlled sys-
tem under a small perturbation have not been fully addressed. In
this paper, we attempt stability (sensitivity) analysis for a multi-
dimensional heat equationwith a singular potential term. This heat
equation is a special case of the second-order parabolic partial dif-
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ferential equations, which is described by
∂ty(x, t)− △y(x, t)− V (x)y(x, t) = χωu(x, t)
inΩ × (0, T ],

y(x, t) = 0 on ∂Ω × (0, T ],
y(x, 0) = y0(x) inΩ,

(1.1)

where T is a positive number, Ω ⊂ Rd (d ≥ 3) is a convex and
bounded domain, with smooth boundary ∂Ω and 0 ∈ Ω , ω is a
nonempty open domain ofΩ , and χω stands for the characteristic
function of ω. The singular term

V (x) =
λ

|x|2
, λ < λ∗ =

(d − 2)2

4
(1.2)

represents a potential function. The assumption (1.2) on the con-
stant λ is crucial for the discussions in the present paper. This is
because it is proved in [4] that if the initial value y0 in the space
L2(Ω) is non-negative, then Eq. (1.1) with control u = 0 admits
a unique global weak solution under assumption (1.2), and when
λ > λ∗, even the local solution may not exist. For the existence
and many other properties of the solutions to Eq. (1.1), we refer
to [5–8], name just a few. In particular, in [8], the well-posedness
of Eq. (1.1) without the sign restriction for the solution and control
is thoroughly discussed from PDE’s point of view. The stabilization
of Eq. (1.1) is investigated in [9].

Wepoint out that the singular potentials occur inmanyphysical
phenomena. In non-relativistic quantummechanics, the harmonic
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oscillator and the Coulomb central potential are typical examples
of such kind (see e.g., [10]). The other applications can be found in
the study of near-horizon structure of black holes and dipoles.

In this paper, we are concerned with an optimal control
problem of system (1.1) in the state space L2(Ω). It is assumed that
the admissible controls are taken from the following set:

Uad = {u ∈ L2(0, T ; L2(Ω))|∥u(·, t)∥L2(Ω) ≤ 1

for almost all t ∈ [0, T ]}. (1.3)

By classical theory, it can be easily shown that for any y0 ∈ L2(Ω),
u ∈ L2(0, T ; L2(Ω)), there exists a unique solution y ∈ C([0, T ];

L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) for Eq. (1.1) under assumption (1.2)

(see also Lemma 2.4 in Section 2) and we denote this solution by
y(·; y0, u) to represent the dependence of the solution with the
control u and the initial value y0. Throughout the paper, we use
∥ · ∥ and ⟨·, ·⟩ to denote the usual norm and the inner product in
the space L2(Ω) respectively without specific explanation.

Let B(0, 1) ≡ {w ∈ L2(Ω)| ∥w∥ ≤ 1} be the closed unit ball of
L2(Ω). The optimal control problem that we are concerned in this
paper is a LQ problemwith control constraint (1.3), and target state
constraint B(0, 1) for system (1.1). The latter reads as follows:

(P ) : inf{J(u, y) | u ∈ Uad, y = y(·; y0, u)
is the solution of (1.1) satisfying y(T ; y0, u) ∈ B(0, 1)},

where

J(u, y) =
1
2

 T

0


Ω

[y2(x, t)+ u2(x, t)]dxdt. (1.4)

From practical implementable standpoint, the optimal control
problem with state and control constraints is significant and
natural. On this regard for PDEs, we refer to [11,12]. We also
mention the work [13] where the nonlinear boundary control of
semi-linear parabolic problems with pointwise state constraints is
concerned.

Themathematical model (1.1) is the critical situationwhere the
power of the potential term is two: V (x) = λ/|x|2. However, this
does not include all reasonable potentials. In reality, this power
may vary in (0, 2)which is themost interested case in applications.
More precisely, the potential function may take the form of

Vα(x) =
λ

|x|α
,

where the power parameter α ∈ (0, 2). We remark that it is ven-
erable physical folklore that potentials of the form Vα(x) product
reasonable quantum dynamics as α ∈ (0, 2). This is explained in
details in [14, Section X.2, p. 169] and [15, Section XI.6, p. 64]),
respectively. This gives rise to a family of natural optimal control
problems under such potential functions as counterparts of prob-
lem (P ), which is stated as follows:

(Pα) : inf{Jα(uα, yα)|uα ∈ Uad, yα = yα(·; y0, uα)
is the solution to Eq. (1.6) satisfying yα(T ) ∈ B(0, 1)},

where

Jα(uα, yα) =
1
2

 T

0


Ω

[y2α(x, t)+ u2
α(x, t)]dxdt, (1.5)

subject to control constraint Uad defined by (1.3) and yα =

yα(·; y0, uα) defined by
∂tyα(x, t)− △yα(x, t)− Vα(x)yα(x, t) = χωuα(x, t)

inΩ × (0, T ],
yα(x, t) = 0 on ∂Ω × (0, T ],
yα(x, 0) = y0(x) inΩ.

(1.6)

It is seen that system (1.6) is just system (1.1) by simply replacing
Vα with V .

Same as Eq. (1.1), under assumption (1.2), for any y0 ∈ L2(Ω),
uα ∈ L2(0, T ; L2(Ω)), it can be shown that for any α ∈ [2 −

ε, 2) with sufficiently small ε > 0, there exists a unique (weak)
solution yα ∈ C([0, T ]; L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) to Eq. (1.6). This
is discussed in Lemma 2.4 in detail in the next section.

Clearly, problem (Pα) can be regarded as a perturbed problem
of problem (P )with the perturbed operator:

Ver(x) =


λ

|x|α
−

λ

|x|2


I, α ∈ (0, 2) (1.7)

where I is the identity operator in L2(Ω). By the Hardy–Poincaré
inequality, this perturbed operator is not a bounded operator in
L2(Ω) for any α ∈ [2− ε, 2). This fact measures the degree of ma-
jor difficulty of the problem and surmounting the obstacle is the
main contribution of the present work. Our objective is to relate
the optimal controls between the problem (P ) and the perturbed
problem (Pα). To this purpose, we must first ensure the existence
of feasible pairs for problems (P ) and (Pα), respectively. The fol-
lowing assumption ismade for problem (P ) throughout the paper.

Assumption (S). For given y0 ∈ L2(Ω), there exists an admissible
control u0 ∈ Uad such that the corresponding solution y(·; y0,
u0) to Eq. (1.1) reaches the interior of B(0, 1) : y(T ; y0, u0) ∈

int(B(0, 1)).

The Assumption (S) is called the Slater condition (see, e.g., [12])
which guarantees the existence of feasible pairs for problem (P )
and (Pα) for all α ∈ [2 − ε, 2) with sufficiently small ε > 0.
The latter is explained in the next section. We point out that the
Assumption (S) is reasonable in the sense that Assumption (S) is
always true for any sufficient large T > 0 or for any fixed T > 0
with sufficiently small initial norm ∥y0∥L2(Ω), which is explained in
Remark 2.2 in next section.

Since both J(·, ·) and Jα(·, ·) are strictly convex functionals, it
is easily shown that under Assumption (S), the optimal control
problems (P ) and (Pα) for all α ∈ [2 − ε, 2) with sufficiently
small ε > 0 admit unique solutions which are denoted by (u∗, y∗)
and (u∗

α, y
∗
α), respectively. We refer this conclusion to Theorem 1.1

of [16]. The main result of this paper is the following Theorem 1.1.

Theorem 1.1. Let y0 ∈ L2(Ω) and assume that Condition (S) stands.
Suppose that (u∗, y∗) is the optimal pair for problem (P ) and (u∗

α, y
∗
α)

is the optimal pair for problem (Pα). Then

u∗

α → u∗ strongly in L2(0, T ; L2(Ω)) as α ↑ 2, (1.8)

and

Jα(u∗

α, y
∗

α) → J(u∗, y∗) as α ↑ 2. (1.9)

In addition,

y∗

α(T ; y0, u∗

α) → y∗(T ; y0, u∗) strongly in L2(Ω) as α ↑ 2. (1.10)

It is apparently that Theorem1.1 can be regarded as a sensitivity
or stability for the optimal control pair and optimal cost for
problem (P ). Mathematically, the major difficulty in proving
Theorem 1.1 lies in the regularity of the solution caused by
the singular potential terms. Simply speaking, we cannot expect
H2(Ω) regularity in spatial variable either for solution of Eq. (1.1)
or (1.6) because the perturbed operator Ver defined by (1.7) is not a
bounded operator in L2(Ω) asα ↑ 2. This gives rise to the difficulty
in application of the classical perturbation theory of C0-semigroups
(see, e.g., [17]). This difficulty is surmounted, however, by setting
up new function space in terms of the Hardy–Poincaré inequality,
which enables us to improve the regularity in the space H−1(Ω).

We proceed as follows. In Section 2, we give some preliminary
results. Section 3 is devoted to the proof of Theorem 1.1. Some
concluding remarks are presented in Section 4.
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