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a b s t r a c t

This paper deals with the stability analysis of a class of switched linear systems on non-uniform time
domains. The considered class consists of a set of linear continuous-time and linear discrete-time sub-
systems. First, some conditions are derived to guarantee the exponential stability of this class of systems
on time scales with bounded graininess functionwhen the subsystems are exponentially stable. These re-
sults are extendedwhen considering an unstable discrete time subsystem or an unstable continuous-time
subsystem. Some examples illustrate these results.
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1. Introduction

The theory of system dynamics on an arbitrary time scale T was
found promising because it demonstrates the interplay between
the theories of continuous-time and discrete-time systems [1–3].
It enables to analyze the stability of dynamical systems on non-
uniform time domains which are subsets of R [4]. As expected,
when T = R, time scale dynamic equations reduce to standard
continuous differential equations. When T = hZ (h is a real
number), they reduce to standard difference equations. Besides
these two cases, there are many interesting time scales with non-
uniform step sizes (for instance, T = {tn}n∈N of so-called harmonic
numbers with tn =

n
k=1

1
k , the Cantor set). Exponential stabil-

ity has been derived for linear systems using the time scale expo-
nential function [5–7]. Some extensions to time-varying dynamic
equations [8], dynamic equations with general structured pertur-
bations [9] and nonlinear finite-dimensional control systems [10]
on time scales have also been investigated. However, this analysis
cannot be easily extended to the class of switched systems.

This paper deals with the stability analysis of a specific class of
switched linear systems. Switched systems are systems involving
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both continuous and discrete dynamics. They consist of a finite
number of subsystems and a discrete rule that dictates switching
between these subsystems [11]. They have been widely studied
during these two last decades (see for instance [12–14]) because
they can describe a wide range of physical and engineering
systems. Most of the existing methods to analyze the stability of
switched linear systems can only be applied to systems evolving on
either continuous [12–14] or discrete uniform time domains [15].

Motivated by this observation, in this paper, the stability is
analyzed for a special class of switched linear systems where
the dynamical system commutes between a continuous-time
linear subsystem and a discrete-time linear subsystem during a
certain period of time. There are many applications involving such
switched systems. A cascaded system composed of a continuous-
time plant, a set of discrete-time controllers and switchings among
the controllers is one example [16]. Impulsive systems (which are a
relevant class of switched systems, in which the state jumps occur
only at some time instances [17]) with non-instantaneous state
jumps are another examples. Indeed, their temporal nature cannot
be represented by the continuous line (i.e. R) or the discrete line
(i.e. Z). The distributed control over network has also attracted
a great deal of attention in the last few years due to its broad
range of applications in many areas [18,19]. This example is of
great interest because the network dictates not only the switching
modes but also the timing of the system [20]. In this case, the
time domain is neither continuous nor uniformly discrete due to
possible intermittent information transmissions for instance.
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In [16], some stability conditions are derived for switched nor-
mal linear systemswhich are given by two subsystems evolving on
continuous time domain and discrete uniform time domains with
fixed sampling periods. The stability analysis is based on a common
quadratic Lyapunov function. However, the extension to a larger
class of systems evolving on a non-uniform time domain is not
trivial. To solve this issue, the theory of system dynamic on an arbi-
trary time scaleT seems to be appropriate. The analysis of switched
systems on arbitrary time scales with additional constraints im-
posed upon the graininess of the time scales is performed in
[20,21] using common quadratic Lyapunov function. In the same
way, the stability of a class of switched linear systems which con-
sist of a set of stable linear continuous-time and stable linear
discrete-time subsystems with fixed graininess function is studied
in [22]. However, finding a common Lyapunov function is not an
easy task for switched systems. Furthermore, the approaches given
in [20–22] do not work if one individual subsystem is not asymp-
totically stable.

This paper aims to extend the existing results for a non uni-
form time domain T = P{ak,bk} formed by a union of disjoint in-
tervals with variable length ak and variable gap bk. The studied
system switches between a continuous-time dynamic subsystem
and a discrete-time subsystem with bounded graininess function.
Either continuous-time or discrete-time subsystemmay be unsta-
ble. Using the time scale exponential function properties, some
conditions are derived to guarantee the exponential stability of
this class of systems under bounded graininess conditionwhen the
subsystems are exponentially stable. These results are extended
when considering an unstable discrete time subsystem or an un-
stable continuous-time subsystem using the spectrum of the sys-
tem matrices.

The outline of this paper is as follows. Section 2 states the prob-
lem and recalls some useful concepts on time scale theory. Sec-
tion 3 derives sufficient conditions to guarantee the exponential
stability of a particular class of switched systems on non-uniform
time domains. Some examples illustrate these results.

2. Preliminaries and problem statement

In this section, we recall the basic notations, main definitions
and properties regarding time scale calculus [1–3]. Then, the
studied class of switched systems is described.

2.1. Basic concepts on time scales

Definition 2.1. A time scale T is an arbitrary nonempty closed
subset of R.

For t ∈ T, the forward jump operator σ(t) : T → T is defined
by

σ(t) := inf{s ∈ T : s > t}. (1)

Themappingµ : T → R+, called the graininess function, is defined
by

µ(t) = σ(t) − t. (2)

Definition 2.2. A point t ∈ T is called right-scattered if σ(t) > t
and right-dense if σ(t) = t .

The set Tκ is defined as follows: if T has a left-scattered
maximum m, then Tκ

= T − {m}; otherwise Tκ
= T.

These necessary definitions are required to define the differen-
tial operator for functions with time scale domains.

Definition 2.3. Let f : T → R be ∆-differentiable on Tκ . The ∆-
derivative of f at t ∈ Tκ is defined as

f ∆(t) = lim
s→t

f (σ (t)) − f (s)
σ (t) − s

. (3)

One can notice that if T = R, then f ∆(t) = ḟ (t), which is the
euclidian derivative of f ; and if T = hZ, then f ∆(t) =

f (t+h)−f (t)
h .

Hence, using the time scale theory, the theory of both differential
and difference equations is unified.

Considering the theory of dynamic equations, let us first
introduce the following class of functions.

Definition 2.4. A function f : T → R is said to be right-dense
continuous or rd-continuous, if it is continuous (in the usual sense)
over any right-dense interval within T.

We say that a matrix A is rd-continuous on T, if each entry of A is
rd-continuous on T.

Definition 2.5. A function p : T → R is regressive if (1 + µ(t)
p(t)) ≠ 0, ∀t ∈ Tκ . We denote the set of all regressive and rd-
continuous functions byR and byR+ if they satisfy 1+µ(t)p(t) >
0, ∀t ∈ Tκ (i.e positively regressive functions).

Similarly, a function matrix A : T → Mn(R) is called regressive,
if ∀t ∈ Tκ , I +µ(t)A(t) is invertible, where I is the identity matrix.
Equivalently, a function matrix A(t) is regressive if and only if all
its eigenvalues are regressive (i.e 1 + µ(t)λi(t) ≠ 0, ∀1 ≤ i ≤

n, ∀t ∈ Tκ , where λi(t) are the eigenvalues of A(t)). The class
of all regressive and rd-continuous functions A from T to Mn(R) is
denoted by R(T,Mn(R)).

The generalized exponential function of p ∈ R on time scale T is
expressed by

ep(t, s) = exp
 t

s
ξµ(τ)(p(τ ))∆τ



with ξµ(t)(z) =


log(1 + µ(t)z)

µ(t)
if µ(t) ≠ 0

z if µ(t) = 0
(4)

where s, t ∈ T, log is the principal logarithm function and the delta
integral is used [23]. For T = R, ep(t, t0) = ep(t−t0) and for T = hZ,
ep(t, s) =

t
τ=s(1 + hp(τ )).

Theorem 2.6 ([1]). Let p(t) ∈ R and t0 ∈ T, the generalized
exponential function ep(t, t0) is the unique solution of the initial value
problem

x∆(t) = p(t) x(t), x(t0) = 1. (5)

The unique solution of

x∆(t) = A(t)x(t) (6)

with x(t0) = I , t ∈ T, A ∈ R(T,Mn(R)), is called the transition
matrix and is denoted by ΦA(t, t0). If A is a constant matrix,
the generalized exponential function ΦA(t, t0) = eA(t, t0) is the
unique solution of (6).

Theorem 2.7 ([1]). Suppose thatmatrix A is regressive, and C : T →

Mn(Rn) is∆-differentiable. If C(t) is a solution of the matrix dynamic
equation C∆(t) = A(t)C(t) − C(σ (t))A(t), then C(t)eA(t, s) =

eA(t, s)C(s).

Corollary 2.8. Suppose A is regressive and C is a constant matrix. If
C commutes with A, then C commutes with eA. In particular, if A is a
constant matrix, then A commutes with eA.
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