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a b s t r a c t

Spatio-temporal biochemical signaling in a large class of protein–protein interaction networks is well
modeled by a reaction–diffusion system. The global existence of the solution to the reaction–diffusion
system is determined by the reaction kinetics model and the protein network topology. We propose
a novel reaction kinetics model that guarantees that the reaction–diffusion system with this model
has a nonnegative invariant global classical solution for any network topology. We then present a
computational method to identify the unknown parameters and initial values for a reaction–diffusion
system with this reaction kinetics model. The identification approach solves an optimization problem
that minimizes the cost function defined as the L2-norm of the difference between the data and the
solution of the reaction–diffusion system. We utilize an adjoint-based optimal control method to obtain
the gradients of the cost function with respect to the parameters and initial values. The regularity of the
global classical solutions of the reaction–diffusion system and its corresponding adjoint system avoids
situations in which the gradients blow up, and therefore guarantees the success of the identification
method for any network structure. Utilizing this gradient information, an efficient algorithm to solve the
optimization problem is proposed and applied to estimate themass diffusivities, rate constants and initial
values of a reaction–diffusion system thatmodels protein–protein interactions in a signaling network that
regulates the actin cytoskeleton in a malignant breast cell.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Reaction–diffusion systems have been widely used as funda-
mental models for the spatio-temporal dynamics of biochemi-
cal concentrations in complex protein networks [1]. Either data
from new experiments or data from the literature can be used to
directly determine the parameters of these reaction–diffusion sys-
tems, such as the mass diffusivities, rate constants, and initial val-
ues. However, the number and types of parameters that can be
obtained via these sources are limited. Although these parame-
ters have physical meanings, the estimates of the model param-
eters solely based on physical laws often give ranges at best. The
lower and upper bounds of these ranges can vary by many orders
of magnitude. Furthermore, the system may not explain the ex-
perimental data, even when all of the parameters are within their
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respective ranges. Thus, a method that finds the set of parameters
and initial values within a physically reasonable range that best
matches the reaction–diffusion systemwith the experimental data
is of considerable interest. To computationally identify the param-
eters and initial values, we pose an optimization problem whose
objective is to minimize the difference between the solution of the
reaction–diffusion system and the data.

Several optimization-based parameter identification methods
for reaction–diffusion partial differential equations (PDEs) have
been developed in the more general context of parabolic equa-
tions. (i) Semi-discretemethods pose an approximate optimization
problem by approximating a parabolic equation with a system of
ordinary differential equations (ODEs) [2,3]. However, the appro-
priate spatial discretization scheme for which the solution of the
adjoint system (the dual of the ODE system) converges to that of
the adjoint equation of the parabolic equation is difficult to select
[4]. (ii) Discretize-then-optimize methods fully discretize a weak
form of the problem in time and space and then optimize the
discretized problem [5]. (iii) Optimize-then-discretizemethods first
obtain an analytic form of the gradient of the cost functionwith re-
spect to the parameters by utilizing weak formulations of the state

http://dx.doi.org/10.1016/j.sysconle.2014.09.013
0167-6911/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2014.09.013
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2014.09.013&domain=pdf
mailto:iyang@eecs.berkeley.edu
mailto:tomlin@eecs.berkeley.edu
http://dx.doi.org/10.1016/j.sysconle.2014.09.013


I. Yang, C.J. Tomlin / Systems & Control Letters 74 (2014) 50–57 51

and adjoint equations and then discretize the problem to numeri-
cally solve the optimization problem [6]. However, when the weak
solution of the reaction–diffusion system blows up in finite time
and so does that of the adjoint system, neither (ii) nor (iii) is able
to compute the gradient of the cost function with respect to the
initial values. In this case, neither framework is able to identify the
initial values. The existing parameter identification methods may
fail for some protein network topology, since the blow up property
of reaction–diffusion systems is related to the network connectiv-
ity [7]. Because protein network structures of interest are diverse
and complicated, an identification approach with guaranteed suc-
cess for any network topology is highly desired.

In this article, we propose a novel reaction kinetics model such
that the reaction–diffusion system with this model has a global
classical solution regardless of the protein network topology. The
reaction kinetics model has two key advantages. First, a reaction–
diffusion system that implements this reaction kinetics model is
an adequate modeling framework for general protein–protein in-
teractions because the solution is nonnegative invariant and does
not blow up in finite time. Second, regardless of the protein net-
work topology, we have well-defined and bounded gradients of
the cost function with respect to the mass diffusivities, rate con-
stants, and initial values if we employ the reaction kinetics model.
With an analytic formula for the gradients based on an adjoint sys-
tem, we are able to efficiently solve the identification problem by
simultaneously optimizing all unknownparameters and initial val-
ues of the system. The boundedness of the gradients enhances the
robustness of the optimization algorithms by preventing potential
failure of the adjoint-based optimal control method: if the gradi-
ents tend to infinity, the algorithms might be terminated before
finding an optimum. Thus, for any network topology, the reaction
kinetics model that we propose guarantees the well-posedness of
the adjoint-based optimal control technique for the identification
of reaction–diffusion systems.

2. Reaction–diffusion systems in protein networks

Assume that the domain Ω is an open, bounded and connected
subset of Rη with the boundary ∂Ω and outer normal vector ν.
We consider the following reaction–diffusion system to model the
spatio-temporal dynamics of the biochemical concentrations (or
densities) in a protein network: for i = 1, . . . ,N ,

∂ui

∂t
− di1ui = ri(u, k) in Ω × (0, T ) (1a)

∂ui

∂ν
= 0 on ∂Ω × (0, T ) (1b)

ui(x, 0) = u0
i (x) in Ω × {t = 0}, (1c)

where u := u(x, t) = (u1(x, t), . . . , uN(x, t)) are the
concentration levels of N proteins, d = (d1, . . . , dN) ∈ (0, +∞)N

are the mass diffusivities, and k = (k1, . . . , kM) ∈ (0, +∞)M are
the rate constants. Note that (1b) and (1c) specify the Neumann
boundary conditions and initial conditions, respectively. Assume
that the initial value u0 is in L∞(Ω)N and u0(x) > 0 for all x ∈ Ω .
We call ri the reaction function of the ith protein. The structure of
the reaction function is determined by two factors: the reaction
kinetics model and the protein network topology. The structure of
r has drawn great interest because it affects the blow up property
of (1) [7]. Therefore, we need to answer the following question:
‘is there a general reaction kinetics model that guarantees that the
reaction–diffusion system does not blow up for any arbitrary network
topology?’ As an initial step to answering this question, we suggest
the following assumptions with respect to the reaction kinetics
among proteins 1, . . . ,N:

Fig. 1. A simple protein network.

(A) No more than two protein molecules can bind to each other at
one time;

(B) Two protein molecules at most are generated by the dissocia-
tion of a complex;

(C) Binding and dissociation cannot occur at the same time.

The reaction kinetics model that we propose is amass-action kinet-
ics model that satisfies assumptions (A)–(C). For example, consider
the protein network depicted in Fig. 1: Protein A phosphorylates
protein B, B phosphorylates protein C, and C dephosphorylates A.
The chemical kinetics of the (de) phosphorylations can bemodeled
as

pA + B
k1


k2

pAB, pAB
k3


k4

pA + pB,

pB + C
k5


k6

pBC, pBC
k7


k8

pB + pC,

pC + pA
k9


k10

pCA, pCA
k11


k12

pC + A,

(2)

where pM denotes the phosphorylated M. If we let u1, u2, u3, u4,
u5, u6, u7, u8, and u9 denote the concentration levels of pA,A, pB,
B, pC, C, pAB, pBC, and pCA, respectively, then the reaction
functions that describe (2) with mass-action kinetics are given by

r1 = −k1u1u4 + k2u7 + k3u7 − k4u1u3 − k9u1u5 + k10u9

r2 = k11u9 − k12u2u5

r3 = k3u7 − k4u1u3 − k5u3u6 + k6u8 + k7u8 − k8u3u5

r4 = −k1u1u4 + k2u7

r5 = k7u8 − k8u3u5 − k9u1u5 + k10u9 + k11u9 − k12u2u5

r6 = −k5u3u6 + k6u8

r7 = k1u1u4 − k2u7 − k3u7 + k4u1u3

r8 = k5x3x6 − k6x8 − k7x8 + k8x3x5
r9 = k9x1x5 − k10x9 − k11x9 + k12x2x5.

(3)

Note that the chemical equations (2) satisfy assumptions (A)–(C).
These assumptions are not restrictive: they only require that the
reaction–diffusion system describe the dynamics of chemical sig-
nals in detail to some degree, for example, these assumptions
do not allow simplified dynamics such as the composition of
more than two protein molecules (due to (A)) or the dissociation
into multiple protein molecules (due to (B)). Importantly, these
assumptions are independent of the protein network structure;
therefore, they do not rule out any network topologies. These as-
sumptions play an important role in proving our key result, the
global existence of the classical solution of (1) with the proposed
reaction kinetics model. Before we present the key result, we cat-
egorize the proteins as follows:

• Cat1 := {a single protein species}.
• Catα := {a complex of α species}, α = 2, 3, . . . .

By definition, any chemical kinetics can generate proteinmolecules
only within these categories. We assume that i ≤ j whenever pro-
tein i is in Catα and protein j is in Catβ with α ≤ β , by permuting
{protein i}Ni=1 if necessary.



Download English Version:

https://daneshyari.com/en/article/752125

Download Persian Version:

https://daneshyari.com/article/752125

Daneshyari.com

https://daneshyari.com/en/article/752125
https://daneshyari.com/article/752125
https://daneshyari.com

