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a b s t r a c t

This paper presents a contractive coprime factor model reduction approach for discrete-time uncertain
systems of LFT form with norm bounded structured uncertainty. A systematic approach is proposed for
coprime factorization and contractive coprime factorization of the underlying uncertain systems. The
proposed coprime factor approach overcomes the robust stability restriction on the underlying systems
which is required in the balanced truncation approach. Our method is based on the use of LMIs to
construct the desired reduced dimension uncertain system model. Closed-loop robustness is discussed
under additive coprime factor perturbations.
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1. Introduction

This paper addresses the coprime factorization (CF) and model
reduction problems for discrete-time uncertain systems which are
possibly robustly unstable. The uncertain systems under consider-
ation are described in terms of linear fractional transformations
(LFTs) [1] with structured norm bounded uncertainty.

Model reduction has been an active research area in the control
society since 1960s. A large number of model reduction methods
have appeared in the literature, among which one of the most
commonly applied methods for stable linear time invariant (LTI)
systems is the balanced truncation method [2] with guaranteed
error bounds [3,4]. For unstable LTI systems, a coprime factor
approach [5] is proposed to avoid the stability issues. Discrete-time
related topics can be found, for example, in [6,7] and the references
therein.

Model reduction problems for uncertain systems have at-
tracted much attention in recent years; see, for example, LFT sys-
tems [8–13], gain scheduling [14,15], linear parameter-varying
systems [16–19], linear time-varying systems [20,21], nonlinear
systems [22], linear parameter dependent (LPD) systems [23],
and related approximation, truncation and simplification prob-
lems [24,25]. The balanced truncation method for robustly stable
uncertain systems is studied in [8,9,26] within the LFT framework.
Concerning those uncertain systems which may be robustly unsta-
ble, a coprime factorization based approach is proposed in [12],
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which extends coprime factor approach [5] for LTI systems to the
underlying uncertain systems. However, no indication is given
in [12] on the contractiveness of the resulting coprime factors.
This motivates the question as to whether a contractive CF can
be obtained for uncertain systems. Contractive CF, as an alterna-
tive to normalized CF, has properties similar to normalized CF. In
the meanwhile, it enables us to take advantage of linear matrix
inequality (LMI) techniques, providing more flexibility to accom-
modate structure constraints including topological structures and
uncertainty structures, and thus can be effectively solved by avail-
able softwares. Particularly for discrete-time uncertain systems,
contractive CF is motivated by the following two observations.
Firstly, for discrete-time LTI systems, applying balanced truncation
to normalized coprime factors of original systems would result in
contractive coprime factors of reduced systems, rather than nor-
malized ones as in continuous cases. Therefore, it is not necessary
to consider normalized CF in the first place in balanced truncation
approaches. Secondly, in the presence of uncertainty, it is very dif-
ficult to obtain normalized coprime factors for the underlying sys-
tems because the corresponding Riccati equations are hard to solve
and most probably lead to infeasible solutions.

In this paper, the coprime factormodel reduction problem stud-
ied in [12] is revisited. The study of this problem is based on the
results in [12] and the author’s previous work on uncertain sys-
tems [26,10,13,23]. In [26,10,23], model reduction problems for
two classes of continuous uncertain systems are studied. By in-
troducing generalized controllability and observability Gramians,
balanced truncation and balanced LQG truncation model reduc-
tion approaches are investigated. In this paper, following the idea
of balanced LQG truncation, instead of just balancing the solutions
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to the control/filter Riccati inequalities, coprime factors are con-
structed based on Riccati inequalities. The advantage of coprime
factor model reduction over balanced LQG truncation is that co-
prime factor model reduction can provide quantitative robust sta-
bility margin which will be discussed in Section 5. In [13], coprime
factor model reduction for a class of continuous-time uncertain
systems is investigated. In this paper the method is extended to
discrete uncertain systems. It should be emphasized here that this
extension is not trivial because of the significant difference be-
tween continuous and discrete systems especially in the presence
of uncertainty. The contribution of this paper, compared to the re-
sults of [12], is three fold. Firstly, we eliminate the full column
rank restriction on the B-matrix in [12], providing a more general
solution to constructing coprime factorization for uncertain sys-
tems. Secondly, a systematic approach to obtain the coprime fac-
torization for the underlying uncertain systems is presented based
on the use of LMIs. A sufficient and necessary condition to en-
sure the feasibility of the derived LMI is also specified. Contractive-
ness is subsequently accomplished by choosing a specific feedback
gain, which extends the similar LTI results to the uncertain sys-
tems under consideration. This enables us to apply balanced trun-
cation [8,9] to the resulting contractive coprime factors to obtain
the reduced-order uncertain systems. It is shown that the resulting
reduced coprime factors are contractive as well. Thirdly, closed-
loop robustness is discussed for the reduced uncertain system
under model reduction error on coprime factors. A sufficient con-
dition is presented to guarantee the closed-loop stability when the
original model is replaced by the reduced model. This robustness
property could potentially contribute to the analysis of gap metric
for uncertain systems which will be the topic of future research.
Although in this paper we only focus on the uncertain systems,
the results can be readily applied to multidimensional systems by
replacing the uncertainty variables with frequency parameters. A
preliminary version of this work appeared in [27].

While this paper focuses on model reduction problems, its
results related to coprime factorization of uncertain systems
could be used in many branches of robust control problems,
for example, analysis of gap metric [28] for uncertain systems,
robust controller design using coprime factorization [29] andYoula
parametrization [30], to list a few. Futureworkwill be carried on to
apply the results of this paper to other relevant control problems.
Notation. The notation is quite standard. Rm×n and Cm×n denote
the set of real and complex, m × n matrices, and Hm denotes the
set of Hermitian m × m matrices. Let lm and lm2 be the space of all
the sequences and square summable sequences in Rm respectively.
Let L(lm) denote the space of all linear operators mapping from lm
to lm, and L(lm2 ) denote the space of all linear bounded operators
mapping from lm2 to lm2 . The gain of an operator ∆ in L(lm2 ) is
given by ∥∆∥ = supz∈lm2 ,z≠0

∥1z∥
∥z∥ , and the adjoint operator of ∆

is denoted as ∆∗ if ∆ is linear, and if ∆ = ∆∗, ∆ < 0 means
that x∗1x < 0 for any x ≠ 0 in Rm. We also use M∗ to denote
the complex conjugate transpose of a complex matrix M . FM(·)∗

and (·)∗MF denote FMF∗ and F∗MF respectively for a Hermitian
matrixM .

2. Problem formulation

We consider the uncertainty structure

1c
= {diag(δ1Ih1 , . . . , δkIhk) : δi ∈ L(l2), δi causal, ∥δi∥ ≤ 1},

and the following uncertain system:

G∆ :



z
y


=


A B
C D

 
ξ
u


,

ξ = 1z, ∆ ∈ 1c ,

(1)

where u(t) ∈ Rm is the control input, z(t) ∈ Rh is the uncertainty
output, y(t) ∈ Rl is the measured output and ξ(t) ∈ Rh is the
uncertainty input; here h = h1 + · · · + hk. Similar to the typical
setting for one-dimensional discrete-time uncertain systems, we
define δ1 = z−1, the time shift operator, and other δi’s are regarded
as uncertainties.

Let the nominal system be denoted by G =


A B
C D


. Then, the

uncertain system (1) is defined by an LFT representation as follows.
For any bounded linear operator∆ ∈ L(lh2) such that I−A∆ is non-
singular, define Fu(G, ∆) := D+ C∆(I − A∆)−1B. In what follows,
robust stability, stabilizability and detectability of the uncertain
system (1) are defined.

Definition 1 (Robust Stability [12]). The uncertain system (1) is
said to be robustly stable, or equivalently, (A, 1c) is said to be ro-
bustly stable, if (I − A∆)−1 exists in L(lh2) and is causal, for all
∆ ∈ 1c .

Definition 2. The uncertain system (1) is said to be robustly
stabilizable if there exists a matrix F , such that (A + BF , 1c) is
robustly stable. Similarly, the system (1) is said to be robustly
detectable if the dual of the system (1) is robustly stabilizable.

The following lemma from [12] states a necessary and sufficient
condition for robust stability. This lemma is given in terms of the
positive commutant set corresponding to 1c defined as

P2 = {diag(Θ1, . . . , Θk) : Θi ∈ Hhi , Θi > 0}. (2)

Lemma 3 (See [12, Proposition 3 and Remark 4]). The system (1) is
robustly stable if and only if there exists P ∈ P2, such that

APA∗
− P < 0. (3)

3. Balanced truncation

In this section we briefly review the balanced truncation model
reduction technique for the uncertain system (1) presented in
[8,9]. It is assumed in this section that the uncertain system (1)
is robustly stable. Similar to the LTI balanced truncation approach
[2–4], this robust stability assumption is essential for the balanced
truncation of the uncertain system (1), and guarantees the exis-
tence of the solutions S, P ∈ P2 to following Lyapunov inequali-
ties,

ASA∗
− S + BB∗ < 0, (4)

A∗PA − P + C∗C < 0. (5)

Theorem 4 ([12, Remark 4]). The following statements are equiva-
lent:

(i) The uncertain system (1) is robustly stable.
(ii) The LMI (4) admits a solution S ∈ P2.
(iii) The LMI (5) admits a solution P ∈ P2.

Definition 5. An uncertain system of the form (1) is said to be
balanced if it has solutions to (4) and (5) which are identical
diagonal matrices.

We summarize the proposed model reduction algorithm as fol-
lows.

Procedure 6 (Balanced Truncation).

1. Solve the LMIs (4) and (5) to obtain S = diag(S1, . . . , Sk) ∈

P2, P = diag(P1, . . . , Pk) ∈ P2.
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