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a b s t r a c t

In this paper, we study the adaptive coordinated tracking problem for continuous-time first-order in-
tegrator systems with quantized information under switching undirected and fixed directed communi-
cation graphs, respectively. The combined effect of quantized relative information error and quantized
absolute information error on the tracking result is investigated. Both the logarithmic quantizers and uni-
form quantizers are considered. It is shown that when logarithmic quantizers are used, exact coordinated
tracking can still be achieved by properly choosing the design parameters in the controller while when
uniform quantizers are used, practical coordinated tracking can be achieved with tracking error bounds
proportional to the quantizer parameter. Simulation examples are provided to illustrate the results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the coordination problems of multi-agent sys-
tems have attracted intensive attentions from various disciplines
due to their wide range of potential applications in areas such as
sensor networks, unmanned vehicle formation and satellite alti-
tude alignment [1,2]. Among the different coordination tasks of
multi-agent systems such as consensus, synchronization, flocking
and swarming control, one of the important control topics is coor-
dinated tracking control. In this problem, there exist some agents
playing the role of leaders while the others as the followers and
the objective is to design distributed controllers for the followers
using only local information to track the trajectory of the leaders.
Many useful results have been reported on this topic regarding dif-
ferent agent dynamics and communication topologies, [3–12] to
name just a few.

A simple observation is that most of the results on the coordi-
nation problems of multi-agent systems rely on exact information
communication among the neighboring agents [1–11]. However,
this may be an unrealistic assumption in practical. Since the agents
usually acquire information about their neighbors through infor-
mation transmission via digital channels or relative statemeasure-
ment through digital sensors, various restrictions exist which may
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severely degrade the performance of the distributed controllers.
One of the important restriction induced by the finite bandwidth of
the digital channels or the finite precision of the digital sensors is
the quantization effect. The information available is quantized in-
formation instead of the precise information. Early results on the
quantized control of multi-agent systems mainly focused on the
average consensus problem for discrete-time first-order integra-
tor systems under undirected communication graphs [13–18]. In
[19–24], dynamic coding/decoding digital channels with dynamic
uniform quantizers were employed and exact consensus with
quantized information under general directed communication
graphs was achieved.

Since most of the practical multi-agent systems are more nat-
urally modeled by continuous-time systems and the quantized
communication usually takes place asynchronously, quantization
effect on continuous-time multi-agent systems attracts more and
more attention recently. A few works have appeared recently fo-
cusing on this class of problems. In [25], the authors considered
the problems of state agreement and distance-based formation
control of first-order integrators with quantized relative measure-
mentwhen the communication graph is an undirected tree. In [26],
asymmetrically and symmetrically quantized consensus protocols
for first-order integrator systemswereproposedwhich guaranteed
that the closed-loop system was Lyapunov stable and the agents
converged to an appropriately defined set in finite time. In [27],
the authors studied the consensus problem for first-order integra-
tor systems with uniformly quantized absolute information and a
hysteretic quantizer was introduced to cope with the undesired
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chattering phenomena. In [28], quantization effect of different
types of quantizers on the synchronization problem of second-
order mobile agents was investigated. More recently, Ref. [29]
studied the consensus problem of a network of first-order inte-
grators with quantized measurement and time-varying directed
topology. A passivity approach to consensus and synchronization
problems in the presence of quantizedmeasurements was investi-
gated in [30].

Note that most of the existing results on the quantized con-
trol of continuous-time multi-agent systems have focused on
the consensus problem under undirected communication graphs
[25–28,30]. This graph limitation mainly comes from the fact
that the iteration based method used in [20–24] for discrete-time
systems is no longer valid in the continuous-time setting. In this
situation, it is much harder to fully exploit the symmetrical quan-
tizer properties when the Laplacian matrices of the directed com-
munication graphs are asymmetrical. Another observation is that
only one kind of quantization process, either absolute information
quantization or relative information quantization is considered in
most of the existing results. As pointed out earlier, coordinated
tracking problem plays an important role in the application of
multi-agent systems. The communication graphs are usually di-
rected due to link failure or energy constraint. Moreover, it is
typical to have both quantized relative information and quan-
tized absolute information in the control of multi-agent systems
to achieve better performance. Thus in this paper, we study the
adaptive coordinated tracking problem for continuous-time first-
order integrator systems with two types of quantized information
under both switching undirected and fixed directed communica-
tion graphs. The dynamic coding/decoding scheme proposed for
discrete-time systems is generalized to the continuous-time set-
ting to achieve exact tracking with only quantized information.
Both the effect of logarithmic quantizers and uniform quantizers
are considered.

The rest of the paper is organized as follows. In Section 2,
some preliminaries and the problem setup are given. In Section 3,
adaptive coordinated tracking with logarithmically and uniformly
quantized information under switching undirected and fixed
directed graphs are studied respectively. In Section 4, two
simulation examples are provided to illustrate the results. Finally,
some concluding remarks are given in Section 5.

Notation. IN is theN×N identitymatrix. 1N = [1, . . . , 1]T ∈ RN .
0 is a vector or matrix with all the elements equal to zero. col(xi) is
the stack column vector of xi with i in some index set S. For a vector
x, ∥x∥1 , ∥x∥2 and ∥x∥∞ are the 1-norm, 2-norm and infinity-norm
of x, respectively. For amatrixA ∈ RN×N , ∥A∥2 denotes the induced
2-norm and {λi(A), i = 1, . . . ,N} is the eigenvalue set of A. When
all λi(A), i = 1, . . . ,N are real, λmax(A) and λmin(A) are the maxi-
mum and minimum eigenvalues of A, respectively.

2. Preliminaries and problem setup

2.1. Graph theory

The communication relation among the agents in the leader–
follower system can be represented by graphs. A directed graph
G = (V(G), E(G)) consists of a finite set of vertices V(G) =

{v0, v1, . . . , vN} and a finite set of edgesE(G) ⊂ V(G)×V(G). Each
agent is represented by a vertex in V(G) and an edge is an ordered
pair (vi, vj) which represents the information flow from agent j to
agent i. Graph G is said to be undirected if for any edge (vi, vj) ∈

E(G), (vj, vi) ∈ E(G). A path P in G is a sequence {vi0 , . . . , vik}

where (vij−1 , vij) ∈ E(G) for j = 1, . . . , k and the vertices are
distinct. If there exists a path from vertex vi to vj, we say that vj
is reachable from vi. An induced subgraph Gs of G is a graph such
that V(Gs) ⊂ V(G) and for any vi, vj ∈ V(Gs), (vi, vj) ∈ E(Gs)

if and only if (vi, vj) ∈ E(G). In this paper, we use the vertex set
V(Gs) = {v1, . . . , vN} of subgraph Gs to represent the follower
agents. For a vertex vi of Gs, the set of in neighbors is denoted by
N+

i = {j : (vi, vj) ∈ E(Gs)} while the out neighbors by N−

i = {j :

(vj, vi) ∈ E(Gs)}. The adjacencymatrix A = [aij] associatedwithGs
is defined as aii = 0 and aij > 0 if (vi, vj) ∈ E(Gs) where i ≠ j. The
Laplacianmatrix ofGs is defined as L = [lij]where lii =


j≠i aij and

lij = −aij where i ≠ j. The communication relation between the
leader and the followers can be represented by a diagonal matrix
B = diag{b1, . . . , bN} where bi > 0 if there exists an edge from
follower i to the leader and bi = 0 otherwise. The in degree of
follower i is defined as deg(vi) =


j≠i aij + bi. To facilitate the

following analysis, a matrix H = L + B is defined and we have the
following two lemmas about the properties of H .

Lemma 1 ([10]). If the subgraph Gs is undirected and the leader is
reachable from all the followers in the graph G, then H is symmetric
and positive definite.

Lemma 2 ([31]). If the subgraphGs is directed and the leader is reach-
able from all the followers in G, then H is of full rank. Furthermore,
define

q = [q1, . . . , qN ]
T

= H−11N

P = diag{p1, . . . , pN} = diag


1
q1

, . . . ,
1
qN


Q = PH + HTP,

(1)

then the diagonal matrix P and symmetric matrix Q are both positive
definite.

In the following, we use the notations p+
= maxi=1,...,N{pi},

p−
= mini=1,...,N{pi}, λ+

q = λmax(Q ) and λ−
q = λmin(Q ).

2.2. Quantizers

A uniform quantizer [15,27] is a map qu : R → R such that

qu(x) = ∆

 x
∆

+
1
2


where ∆ > 0 is the quantizer parameter and ⌊a⌋ denotes the
greatest integer that is less than or equal to a. For a uniform
quantizer, the quantization error is always bounded by ∆

2 , i.e.,
|qu(x) − x| ≤

∆

2 for all x ∈ R.
A logarithmic quantizer [19,28] is an odd map ql : R → R

defined by

ql(x) =


exp


∆


ln(x)
∆


, x > 0

0, x = 0
−ql(−x), x < 0.

The quantization error for the logarithmic quantizer satisfies

|ql(x) − x| ≤ δl|x|, (2)

where the quantizer parameter δl = 1−e−∆. It holds that xql(x) ≥

(1 − δl) |x|2.
We can easily generalize the above scalar-valued definitions

of quantizers to vector-valued cases. For example, for any x =

[x1, . . . , xn]T ∈ Rn, the vector-valued logarithmic quantizer ql(·) :

Rn
→ Rn is defined to be ql(x) , [ql(x1), . . . , ql(xn)]T . It is easy to

verify that xTql(x) ≥ (1 − δl)xT x for any x ∈ Rn.

Remark 1. The considered uniform and logarithmic quantizers
are the two types of quantizers which are most commonly used
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