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a b s t r a c t

This paper presents conditions for designing a switching rule that drives the state of the switched dynamic
system to a desired equilibrium point. The proposed method deals with the class of switched systems
where each subsystem has an affine vector field and considers a switching rule using ‘max’ composition.
The results guarantee global asymptotic stability of the tracking error dynamics even if sliding mode
occurs at any switching surface of the system. In addition, the method does not require a Hurwitz convex
combination of the dynamic matrices of the subsystems. Two numerical examples are used to illustrate
the results.
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1. Introduction

A switched system can be defined as a dynamical system
composed by a set of subsystems with continuous time dynamic
and a rule that organizes the switching among them [1]. Each of
these subsystems corresponds to a particular operation mode of
the switched system. Switched systems can be seen as a particular
class of hybrid systems or also as a variable structure system [2,3].

The problem of designing switching rules for switched systems
has been largely studied and several results are available in the lit-
erature [4,5]. One may classify switching-based control strategies
as time-dependent, state-dependent or time–state-dependent [2].
This paper will focus on the problem of designing state-dependent
switching strategies. In this problem the type of Lyapunov function
is an important issue. One type of approach is based on a common
quadratic Lyapunov function, i.e. a function that is the same for all
subsystems [6–8]. Another type of approach is based on multiple
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Lyapunov functions, i.e. the Lyapunov function is a composition of
auxiliary functions that are different for each subsystem, as for in-
stance in [9,10]. The motivation for using a multiple instead of a
single Lyapunov function approach is that the first is more general
and encompass the second as a particular case. Thus, this paperwill
focus on the problemof designing state-dependent switching rules
using the multiple Lyapunov function approach.

Another important aspect of the study of switched systems is
the system behavior in sliding motions. Sliding motions play an
important role in switched systems as they can ideally represent
some complicated dynamics found in the realworld [11]. However,
control strategies based on slidingmotions cannot be implemented
in the real world because real actuators cannot operate under
the unlimited switching frequency regime of a sliding mode.
To avoid chattering problems, it is possible to introduce dwell
time restrictions or suitable structural state dependent constraints
to the switching rule design [12,5,13,14]. For this reason, many
results found in the literature assume that some kind of switching
rule constraint exists so that only a finite number of switches occur
in any finite time.

This paper presents conditions to the design of a switching rule
that asymptotically drives the state of an affine switched system
to a given constant reference. The switching rule is based on a
‘max’ composition of auxiliary functions, i.e. the maximum over
a set of auxiliary functions. This particular type of composition
was considered for instance in [9,10,15,16]. The ‘max’ composition
rule has interesting properties as, for instance, it does not require
all the auxiliary functions to be positive functions, which is
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necessary when using the ‘min’ composition for switched linear
systems. However, some technical difficulties may appear when
dealing with sliding motions. See [2,15] for details. As in [16], the
conditions presented in this paper guarantee global asymptotic
stability of the closed-loop switched systemeven if slidingmotions
occur at any sliding surface of the system. Themain contribution of
this paper is that the proposed conditions for switching rule design
do not require the existence of a Hurwitz convex combination of
the affine subsystems. The results in [16] can only be applied if it is
possible to find a Hurwitz convex combination of the subsystems.

This paper is organized as follows. This section ends with
the notation used in the paper. The next section presents some
preliminary definitions and two illustrative examples. Section 3
presents some aspects regarding the use of ‘max’ composition for
the switching rule. The main results are presented in Section 4
and are illustrated through the numerical examples previously
presented. The paper ends with some concluding remarks.
Notation. Rn denotes the n-dimensional Euclidean space, Rn×m is
the set of n × m real matrices. For a real matrix S, ST denotes
its transpose and S > 0 (S < 0) means that S is symmetric
and positive-definite (negative-definite). For a set of real numbers
{v1, . . . , vm}weuse argmax{v1, . . . , vm} to denote a set of indexes
that is the subset of {1, . . . ,m} associated with the maximum
element of {v1, . . . , vm}. For a differentiable scalar function V (e)
the column vector ∇V (e) denotes the gradient of V (e). Co{g1,
. . . , gk} denotes the convex hull obtained from the set of k vectors
{g1, . . . , gk}.

2. Affine switched systems

Consider a switched dynamical system composed of m affine
subsystems indicated below

ẋ(t) = Aix(t) + bi, i ∈ M := {1, . . . ,m} (1)

where x ∈ Rn is the system state supposed to be available from
measurements and Ai ∈ Rn×n, bi ∈ Rn are given matrices of
structure.

Let us suppose the changes among the m subsystems of (1)
occur according to a switching rule represented by the set valued
switching signal

σ(x(t)) : Rn
→ M (2)

that is assumed to be piecewise constant and may be viewed as a
mapping from the state vector, taken at each time instant t , to the
index set σ(x(t)) ⊆ M of the current (active) operationmode. If, at
a given time, σ(x(t)) is a singleton, the element of σ(x(t)) defines
the active subsystemand the switched systemdynamics is givenby
(1). On the other hand, if σ(x(t)) is not a singleton, a sliding mode
may be occurring at that time and the switched system dynamics
can be represented by the differential inclusion ẋ(t) ∈ Co{Aix(t)+

bi, i ∈ σ(x(t))} where Co denotes the convex hull. Recall that
the vector field characterizing a switched system is discontinuous
and therefore does not satisfy the usual Lipschitz conditions for
the existence and uniqueness of the solutions to the differential
equations. For this reason, additional considerations must be
done in order to characterize solutions to a differential inclusion
representing a switched system. In this paper, the solutions to
the above differential inclusion is taken in the sense of Filippov
[11, p. 50].

We seek to design a switching rule, σ(x(t)), that drives the
switched system state asymptotically to a given constant reference
x̄, that is

lim
t→∞

x(t) = x̄. (3)

Given x̄, it is convenient to define the state error vector

e(t) := x(t) − x̄ (4)

and rewrite the dynamics of the switched subsystems in terms of
e(t) as follows

ė(t) = Ai e(t) + ki, ki := bi + Aix̄. (5)

Since x̄ is a constant reference, we can therefore reformulate our
switching rule design problem in terms of e(t). In order to take
into account the sliding motions, if they occur, we assume that
the dynamics of the switched error system can be represented as a
convex combination of the subsystem’s vector fields (5) [11], i.e. by
the differential inclusion

ė(t) =


i∈σ(e(t))

θi(e(t)) (Ai e(t) + ki), θ(e(t)) ∈ Θ (6)

where

Θ :=


θ ∈ Rm

:

m
i=1

θi = 1, θi ≥ 0


(7)

and θ(e(t)) is the vector with entries θi(e(t)) defined according to
Filippov [11, p. 50]. Observe that θi(e(t)) = 0 if i ∉ σ(e(t)).

If σ(e(t)) = {i} is singleton, we have θi(e(t)) = 1 and in
this case (6) can be represented as in (5). If σ(e(t)) is not sin-
gleton the system (6) can be alternatively represented as ė(t) ∈

Co{Ai e(t) + ki, i ∈ σ(e(t))}. The vector θ(e(t)) in (6) represents
a parametrization of the elements of the above convex hull. When
σ(e(t)) is not singleton, a slidingmotionmay occur at a point e(t) if
it is possible to find a vector θ(e(t)) such that ė(t) is an element of
the convex hull belonging to the tangent hyperplane of the switch-
ing surface at the point e(t).

In order to achieve globally the tracking objective in (3), the
origin must be a globally asymptotically stable equilibrium point
of the differential inclusion (6).

Lemma 1. The origin is an equilibrium point of the differential inclu-
sion (6) only if there exists θ̄ ∈ Θ such that

m
i=1

θ̄i ki = 0. (8)

Proof. Since θi(e(t)) for i ∈ σ(e(t)) is defined according to Filip-
pov [11, p. 50] and θi(e(t)) = 0 if i ∉ σ(e(t)), (6) can be rewritten
as

ė(t) =

m
i=1

θi(e(t)) (Aie(t) + ki).

At equilibrium ė = e = 0, θ(0) = θ̄ and thus (8) is obtained. �

Before proceeding with the technical results we introduce two
illustrative examples.

2.1. Example #1

Consider a buck–boost converter with a linear (resistor) load
[17–19]. This is an affine linear switched systemwith twomodes of
operation, M = {1, 2}, with state space representation (1) where

A1 =


0 0

0 −
1
RC


, A2 =

 0
1
L

−
1
C

−
1
RC

 ,

b1 =

Ein
L
0


, b2 =


0
0


.
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