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a b s t r a c t

Although stochastic dynamical systems have received a great deal of attention in terms of stabilization
studies, so far there are few works on controlled stochastic dynamical systems with state delay. In this
paper, a controlled stochastic dynamical system represented by a stochastic differential equation with
state delay is considered. Condition under which the system is exponentially stable in mean square and
in probability is examined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is now well known that stochastic modeling of dynamical
system has come to play an important role in many branches of
science, engineering and economic applications. An area of partic-
ular interest has been the control of stochastic systems,with conse-
quent emphasis being placed on optimal control and stabilization
of the stochastic model in terms of various definitions of stochas-
tic stability. Control of stochastic dynamics have been studied by
many authors including [1,2]. The earliest literature on the subject
is [3] for the case of uncontrolled diffusion process and extended in
[4] to the general case, where the control variable enters both the
drift and diffusion coefficients. Closely connected to the concept
of system controllability is the concept of stability. The concept of
stability is extremely important in the control of a dynamical sys-
tem, because almost every system is designed to be stable and a
system that is not stabilizable cannot be controllable. Stability is
one of the most important issues in the analysis and synthesis of
stochastic systems and often regarded as the first characteristic of
the dynamical systems ormodels to be studied. Recently, there has
been growing interest in analyzing stability in design controls of
stochastic systems. This interest arises out of the need to develop
robust control strategies for dynamical systems with random dy-
namics. In the literature, various notions of stability of dynamical
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systems for the equilibriumstructure, such as exponential stability,
global and local stability, practical stability, and boundedness, have
been introduced, see for example, [5–7]. In [8] themean square sta-
bility of the zero solution of an impulsive stochastic Volterra equa-
tion is studied. By using inequalities on Lyapunov function, several
sufficient conditions for the mean square stability are presented,
including mean square exponential and non-exponential asymp-
totic stability. Their results indicate that not only the impulse in-
tensity but also the time of impulse can influence the stability of
the systems. In [9], conditions under which the desired structure
of a stochastic interval system with time dependent parameters
is stabilizable are examined and necessary and sufficient condi-
tion under which two-level preconditioner guarantees quadratic
mean exponential stability of the desired structure of uncontrolled
stochastic interval system is also presented.

The mathematical models of certain physical, engineering and
economic processes and systems are often represented using delay
differential equations. Stochastic differential equations with state
delay are appropriate for modeling systems whose dynamical
process is dependent not only upon the present state but also
upon the state at some time in the past. It is well known that
time-delay systems have been an active research area for the last
few decades. There have been a great number of research results
concerning time delay systems in the literature. The importance
of the study on time-delay systems is further highlighted by
the recent survey paper and book [10–12]. Interesting results
on systems with delay can also be found in [13–15,1]. Mao and
Selfridge [16] considered the stability of a stochastic interval
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system with time delay, specifically they establish a sufficient
condition under which a perturbed stochastic system with time
delay remains exponentially stable. Using a specific example, it
was shown how this condition may be used, and they extended
it to deal with multiple time delays. Shi et al. [17] investigated
the problem of worse case (also known as H∞) control for a
class of uncertain systems with Markovian jump parameters and
unknown time varying multiple delays in the state and input.
They obtained complete results for instantaneous and delayed
state feedback control designs which guarantee the weak delay-
dependent stochastic stability with a prescribed H∞ performance.
They provided solutions in terms of a finite set of coupled linear
matrix inequalities. In [18] theorems andmethods adopteddirectly
from deterministic controllability problems are used to formulate
and prove necessary and sufficient conditions for various kinds
of stochastic relative controllability for linear system with state
delay, whereas Klamka [19] examined the controllability of a finite
dimensional system with multiple constant point delay in the
control variable. Taniguchi [20] studied the exponential stability
for stochastic delay partial differential equations by use of the
energy method which overcomes the difficulty of constructing the
Lyapunov functional on delay differential equations.

Although stochastic dynamical systems have received a great
deal of attention in terms of stabilization studies, in the last two
decades, so far there are few works on controlled stochastic dy-
namical systems with state delay. This makes stabilization of
controlled stochastic dynamical system with state delay an active
research area. In this paper, a controlled stochastic dynamical sys-
tem represented by a stochastic differential equation with state
delay considered in [18] is studied. By constructing quadratic Lya-
punov–Krasovskii functional, condition under which the system is
exponentially stable inmean square and in probability is examined
thus extending existing results in the realm of stability.

2. System description and optimal control

Throughout this paper, we use the following standard nota-
tions: Let (Ω, F , P) be a complete probability space with proba-
bility measure P on Ω and a filtration {Ft |t ∈ (0, T )} generated by
an n-dimensional standardWiener process {W (s) : 0 ≤ s ≤ t} de-
fined on the probability space (Ω, F , P). Let L2(Ω, Ft,Rn) denote
the Hilbert space of all Ft-measurable square integrable random
variable with values in Rn. Let LF

2
([0, T ],Rn) denote the Hilbert

space of all square integrable and Ft-measurable process with val-
ues in Rn. The filtration {Ft |t ∈ (t0, T )} satisfies the usual condi-
tions, that is, the filtration contains all P-null sets and is right
continuous. For a matrix A, AT denotes the transpose of A, λmax(A)
stands for maximum eigenvalue of A and κp(A) = ∥A∥p

A−1

p is

the condition number of A in p norm. E denotes expectation oper-
ator, P denotes probability of the argument and ∥·∥ the norm op-
erator.

We consider a stochastic dynamical system whose structural
form can be represented by the following stochastic differential
equation with a single point delay in the state variable

dx(t) = (A1x(t) + A2x(t − h) + Bu(t)) dt + σ dW (t)
for t ∈ [0, T ], T > h, (2.1)

where x(t) is an n × 1 structural or state vector, u(t) is an m × 1
control vector and A1 and A2 are n × n dimensional constant ma-
trices, B is an n × m dimensional constant matrix and W (t) is
an n-dimensional standard Weiner process, σ is an n × n dimen-
sional constant matrix and h > 0 is a constant point delay. Let
X = L2(Ω, Ft,Rn) and U = Rm be respectively the state and con-
trol spaces with compact and convex structure. For any function

initial data x(t0) = x0 ∈ LF2

[−h, 0], L2(Ω, Ft,Rn)


and any given

admissible control u ∈ Uad = LF2 ([0, T ],Rm) for t ∈ [0, T ], it is
well known [18] that there exists a unique solution x(t; x0, u) ∈

L2(Ω, Ft,Rn) of the linear stochastic differential state equation (2.1)
which can be represented in every time interval t ∈ [kh, (k +

1)h), k = 0, 1, 2, . . . by the following integral formula:

x(t; x0, u) = x(kh; x0, u) +

 t

kh
(A1x(s; x0, u)

+ A2x(s − h; x0, u)) ds +

 t

kh
Bu(s) ds

+

 t

kh
σ dW (s),

where u(t) ∈ U satisfies E
 T
0 ∥u(t)∥2 dt < ∞.

Using the well knownmethod of steps, see for example [21,22],
the explicit solution of (2.1) for t > 0 is

x(t; x0, u) = x(t; x0, 0) +

 t

0
Φ(t − s)Bu(s) ds

+

 t

0
Φ(t − s)σ dW (s),

where Φ(t) is the n × n dimensional fundamental matrix of state
transition for the delayed state equation (2.1), which satisfies the
matrix integral equation

Φ(t) = I +

 t

0
Φ(s)A1 ds +

 t−h

0
Φ(s)A2 ds

for t > 0, with initial conditions

Φ(0) = I, Φ(t) = 0 for t < 0.

Furthermore, for t > 0, x(t; x0, 0) is given by

x(t; x0, 0) = exp(A1t)x0(0) +

 0

−h
Φ(t − s − h)A2x0(s) ds

or equivalently,

x(t; x0, 0) = exp(A1t)x0(0) +

 h

0
Φ(t − s)A2x0(s − h) ds.

Let a linear control operator LT ∈ L(LF2([0, T ],Rm), L2(Ω, FT ,Rn))
be defined by

LT (u) =

 h

0
exp (A1(T − s)) Bu(s) ds

+

 T

h
Φ(T − s)Bu(s) ds. (2.2)

Its adjoint bounded linear operator L∗

T ∈ L2(Ω, FT ,Rn) → LF2
([0, T ],Rm) has the following form:

L∗

T (z) =



B∗ exp(A∗

1(T − t)) + B∗Φ∗(T − t)

E {z|Ft}

for t ∈ [h, T ]
B∗ exp(A∗

1(T − t))

E {z|Ft} for t ∈ [0, h].
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