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a b s t r a c t

In this work, we develop an economic model predictive control scheme for a class of nonlinear systems
with bounded process andmeasurement noise. In order to achieve fast convergence of the state estimates
to the actual system state as well as the robustness of the observer to measurement and process noise,
a deterministic (high-gain) observer is first applied for a small time period with continuous output
measurements to drive the estimation error to a small value; after this initial small time period, a
robust moving horizon estimation scheme is used on-line to provide more accurate and smoother state
estimates. In the design of the robust moving horizon estimation scheme, the deterministic observer is
used to calculate reference estimates and confidence regions that contain the actual system state. Within
the confidence regions, the moving horizon estimation scheme is allowed to optimize its estimates.
The output feedback economic model predictive controller is designed via Lyapunov techniques based
on state estimates provided by the deterministic observer and the moving horizon estimation scheme.
The stability of the closed-loop system is analyzed rigorously and conditions that ensure the closed-
loop stability are derived. Extensive simulations based on a chemical process example illustrate the
effectiveness of the proposed approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, significant efforts have been devoted to the
development of economic model predictive control (EMPC) de-
signs due to the pursuit of higher process operation efficiency (e.g.,
[1–5]). EMPC is different from the traditional two-layer real-time
optimization structure and addresses economic objectives directly
within the framework ofmodel predictive control (MPC) by replac-
ing the conventional MPC quadratic cost function with a general
economic cost function (which is not quadratic in general). There-
fore, EMPCmay, in general, lead to time-varying process operation
policies instead of steady-state operation.

Various results of EMPC have been developed. In [6], a design
that combines steady-state optimization and a linearMPCwas pro-
posed. In [2], an EMPC scheme for nonlinear systems that requires
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the closed-loop system state settles to a steady-state at the end of
the prediction horizon was developed. The application of EMPC to
cyclic processes as well as a closed-loop stability analysis was dis-
cussed in [3]. In [4], a two-mode Lyapunov-based EMPC (LEMPC)
design for nonlinear systems was developed. The LEMPC is capa-
ble of handling asynchronous and delayed measurements and can
be implemented in a distributed fashion [7]. All of the above men-
tioned EMPC schemes were developed under the assumption of
state feedback. However, this assumption may not hold in many
applications. In order to address this issue, in [8], an output feed-
back EMPC was proposed based on a high-gain observer [9,10].
However, in [8], process disturbances and measurement noise
were not taken into account explicitly. When measurement noise
is present, the performance of a high-gain observer may decrease
significantly due to its sensitivity to measurement noise [11].

In order to improve the robustness of the high-gain observer to
modelmismatch and uncertaintieswhile reducing its sensitivity to
measurement noise significantly, in thiswork,wepropose a robust
moving horizon estimation (RMHE) based output feedback EMPC
design. The idea of RMHE was initially developed in [12] which
integrates deterministic observer techniques and optimization-
based estimation techniques in a unified framework. Specifically,
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in the RMHE, an auxiliary deterministic nonlinear observer that
is able to asymptotically track the nominal system state is taken
advantage of to calculate a confidence region. In the calculation of
the confidence region, bounded process and measurement noise
are taken into account. The RMHE is only allowed to optimize its
state estimates within the confidence region. By this approach, it
was proved that the RMHE gives bounded estimation error in the
case of bounded process noise. It was also shown to compensate
for the error in the arrival cost approximation and could be used
together with different arrival cost approximation techniques to
further improve the state estimate. The RMHE has been applied to
the design of a robust output feedback Lyapunov-based MPC [13]
and has also been extended to estimate the state of large-scale
systems in a distributed manner [14].

In the present work, we consider EMPC of nonlinear systems
with bounded process andmeasurement noise. In order to achieve
fast convergence of the state estimates to the actual system state
(thus an effective separation principle between the observer and
controller designs) and the robustness of the system to process
and measurement noise, a deterministic (high-gain) observer is
first applied for a small time period with continuous output
measurements to drive the estimation error to a small value; after
this initial small time period, a RMHE based on the deterministic
observer is used on-line to providemore accurate and smooth state
estimates. In the design of the RMHE, the deterministic observer is
used to calculate the reference estimate and the confidence region
for the state estimate. The output feedback EMPC is designed via
the LEMPC technique based on state estimates provided by the
deterministic observer and the RMHE. The stability of the closed-
loop system is rigorously analyzed, and conditions that ensure
the closed-loop stability are derived. Extensive simulations based
on a chemical process example illustrate the effectiveness of the
proposed approach.

2. Preliminaries

2.1. Notation

The operator |·| denotes the Euclidean norm of a scalar or a vec-
tor while | · |2Q indicates the square of theweighted Euclidean norm
of a vector, defined as |x|2Q = xTQx where Q is a positive definite
square matrix. A function f (x) is said to be locally Lipschitz with
respect to its argument x if there exists a positive constant Lxf such
that |f (x′) − f (x′′)| ≤ Lxf |x

′
− x′′| for all x′ and x′′ in a given region

of x and Lxf is the associated Lipschitz constant. A continuous func-
tion α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and satisfies α(0) = 0. A function β(r, s) is said to be
a class KL function if for each fixed s, β(r, s) belongs to class K
with respect to r , and for each fixed r , it is decreasing with respect
to s, and β(r, s) → 0 as s → ∞. The symbol diag([v]) denotes a
diagonal matrix whose diagonal elements are the elements of vec-
tor v. The symbol ‘\’ denotes set subtraction such that A \ B :=
{x ∈ A, x ∉ B}. Finally, xT denotes the transpose of the vector x.

2.2. System description

We consider nonlinear systems described by the following
state-space model:

ẋ(t) = f (x(t))+ g(x(t))u(t)+ l(x(t))w(t)
y(t) = h(x)+ v(t) (1)

where x ∈ Rn denotes the state vector, u ∈ Rp denotes the control
(manipulated) input vector, w ∈ Rm denotes the disturbance vec-
tor, y ∈ Rq denotes the measured output vector and v ∈ Rq is the
measurement noise vector. The control input vector is restricted

to be in a nonempty convex set U ⊆ Rp such that U := {u ∈ Rp
:

|u| ≤ umax
}where umax is the magnitude of the input constraint. It

is assumed that the noise vectors are bounded such as w ∈ W and
v ∈ V where

W := {w ∈ Rm
: |w| ≤ θw, θw > 0}

V := {v ∈ R : |v| ≤ θv, θv > 0}

with θw and θv being known positive real numbers. Moreover, it
is assumed that the output measurement vector y of the system is
continuously available at all times. It is further assumed that f , g , l
and h are sufficiently smooth functions and f (0) = 0 and h(0) = 0.

Remark 1. The model of Eq. (1) describes a large number of
processes arising in the context of the chemical process industry.
For example, onemay express themodel of the benzene alkylation
process network considered in [7] in this form.

2.3. Stabilizability and observability assumptions

It is assumed that there exists a state feedback controller u =
k(x) that renders the origin of the nominal systemof Eq. (1) (i.e., the
system of Eq. (1) with w(t) ≡ 0) asymptotically stable while satis-
fying the input constraint for all the states x inside a given compact
set containing the origin. This assumption implies that there exist
class K functions αi(·), i = 1, 2, 3, 4 and a continuously differen-
tiable Lyapunov function V (x) for the closed-loop nominal system,
that satisfy the following inequalities [15,16] :

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f (x)+ g(x)k(x)) ≤ −α3(|x|)∂V (x)

∂x

 ≤ α4(|x|)

(2)

and k(x) ∈ U for all x ∈ D ⊆ Rn where D is an open neighbor-
hood of the origin. We denote the level set of V (x), Ωρ ⊆ D, as the
stability region of the closed-loop systemunder the controller k(x).

It is also assumed that there exists a deterministic observer that
takes the following general form:

ż(t) = F(ϵ, z, y) (3)

where z is the observer state which is an estimate of the state of
system of Eq. (1), y is the output measurement vector and ϵ is a
positive parameter. This observer together with the state feedback
controller u = k(x) form an output feedback controller: ż =
F(ϵ, z, y), u = k(z) which satisfies the following assumptions:

(1) there exist positive constants θ∗w , θ∗v such that for each pair
{θw, θv}with θw ≤ θ∗w , θv ≤ θ∗v , there exist 0 < ρ1 < ρ, em0 >
0, ϵ∗L > 0, ϵ∗U > 0 such that if x(t0) ∈ Ωρ1 , |z(t0)− x(t0)| ≤ em0
and ϵ ∈ (ϵ∗L , ϵ

∗

U), the trajectories of the closed-loop system are
bounded in Ωρ for all t ≥ t0;

(2) and there exists e∗m > 0 such that for each em ≥ e∗m, there exists
tb such that |z(t)− x(t)| ≤ em for all t ≥ tb(ϵ).

Note that a type of observer that satisfies the above assumptions
is a high-gain observer [11]. From an estimate error convergence
speed point of view, it is desirable to pick the observer parameter
ϵ as small as possible; however, when the parameter ϵ is too small
(i.e., the observer gain is too large), it will make the observer very
sensitive to measurement noise. In the observer assumptions, a
key idea is to pick the gain ϵ in a way that balances the estimate
error convergence speed to zero and the effect of the noise. In the
remainder of this work, the estimate given by the observer F will
be denoted as z.



Download English Version:

https://daneshyari.com/en/article/752199

Download Persian Version:

https://daneshyari.com/article/752199

Daneshyari.com

https://daneshyari.com/en/article/752199
https://daneshyari.com/article/752199
https://daneshyari.com

