
Systems & Control Letters 63 (2014) 32–38

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Transverse contraction criteria for existence, stability, and robustness
of a limit cycle
Ian R. Manchester a,∗, Jean-Jacques E. Slotine b

a ACFR, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Australia
b Nonlinear Systems Laboratory, Massachusetts Institute of Technology, USA

a r t i c l e i n f o

Article history:
Received 9 April 2013
Received in revised form
3 October 2013
Accepted 18 October 2013
Available online 16 November 2013

Keywords:
Nonlinear systems
Stability
Contraction
Limit cycles
Sum-of-squares
Convex optimisation

a b s t r a c t

This paper derives a differential contraction condition for the existence of an orbitally-stable limit cycle
in an autonomous system. This transverse contraction condition can be represented as a pointwise linear
matrix inequality (LMI), thus allowing convex optimisation tools such as sum-of-squares programming
to be used to search for certificates of the existence of a stable limit cycle. Many desirable properties
of contracting dynamics are extended to this context, including the preservation of contraction under a
broad class of interconnections. In addition, by introducing the concepts of differential dissipativity and
transverse differential dissipativity, contraction and transverse contraction can be established for inter-
connected systems via LMI conditions on component subsystems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic systems with periodic solutions are important in
many areas of engineering, including biologically-inspired robot
locomotion, phase-locked loops, vortex shedding from aircraft
wings, and combustion oscillations, to name just a few. Periodic
behaviour is just as pervasive in biology [1].

The basic question we address in this paper is the following:
when does an autonomous system of the form
ẋ = f (x) (1)
have the property that all solutions starting from a particular set
K converge asymptotically to a unique limit cycle? We will also
address the question of when this property is preserved under
various system interconnections. It is well known that periodic
solutions of an autonomous differential equation can never be
asymptotically stable. This is clear from the fact that two solutions
initialised on the periodic orbit but offset in phase will never con-
verge.

There is a long and distinguished history of research into limit
cycles for nonlinear systems. For example, the famous result of
Poincaré–Bendixson gives a very simple condition for planar sys-
tems, and an important generalisation tomonotone cyclic feedback
systems was published in [2]. For general systems, Birkhoff gave
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necessary conditions for periodic solutions in terms of the exis-
tence of particular ‘‘phase variables’’ [3], although these conditions
imply the existence of at least one limit cycle, but give no insight
into the number of limit cycles, or their stability.

In recent years, there has been substantial interest in using opti-
misation methods to search for ‘‘stability certificates’’ such as Lya-
punov functions and barrier certificates [4–6]. Regions of attraction
to periodic orbits have an interesting structure: they must be a
continuous deformation of a torus: the Cartesian product of an
open unit disc of dimension n − 1, with a scalar circle coordinate
[7]. In previous papers, the first author and others have extended
the computational approach to limit cycle analysis using ‘‘trans-
verse dynamics’’ and sum-of-squares programming [8–10]; how-
ever this method is not applicable when the system dynamics are
uncertain, since uncertainty will generally change the location of
the limit cycle in state space.

An alternative to Lyapunov methods is to search for a contrac-
tion metric [11,12]. For the purposes of robust stability analysis
of equilibria, an important difference is that a Lyapunov function
must generally be constructed about a known equilibrium,
whereas a contraction metric implies the existence of a stable
equilibrium indirectly. This is particularly useful if the equilibrium
point may change location depending on the unknown dynamics.

Historically, basic convergence results on contracting systems
can be traced back to the 1949 results of Lewis in terms of Finsler
metrics [13], and results of Hartman [14] and Demidovich [15]. To
our knowledge, contraction to limit cycles was first investigated
using an identity metric by Borg [16], and Hartman and Olech [17].
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This line of analysis was extended by Leonov and colleagues to
more general metrics [18] and attractors [19,20].

In this paper, we introduce transverse contraction, extending the
results of [16–18] by exploiting generalised metrics and system
combination properties as in [11]. We also introduce differential
dissipativity and transverse differential dissipativity, as well as LMI
conditions for each, giving a framework for optimisation-based
analysis of complex interconnections of nonlinear systems.

2. Problem setup and preliminaries

We assume that f : K → Rn in (1) is smooth and x ∈ Rn, and
that a unique solution of (1) exists. A set K is called strictly forward
invariant under f if any solution of (1) starting with x(0) in K is in
the interior of K for all t > 0. A periodic solution x⋆ is one forwhich
there exists some T > 0 such that x⋆(t) = x⋆(t + T ) for all t . Equi-
libria are trivially periodic for every T , but for oscillatory solutions
– which are our main concern – there is someminimal time T such
that the above holds and this is referred to as the period.

The orbit of a periodic solution is the set X⋆
:= {x : x = x⋆(t)

for some t}. Note that while non-trivial periodic solutions cannot
be asymptotically stable, their orbits can be, and in this case we
say that the solution is orbitally stable (see, e.g., [21]). Define a time
reparametrisation τ(t) as a smooth function τ : [0,∞) → [0,∞)
such that τ(t) is monotonically increasing and τ(t) → ∞ as
t → ∞.

A Finsler function [22] on a manifold M with a tangent bun-
dle TM is a smooth function V : TM → R satisfying positive-
definiteness: for all x ∈ M, V (x, δ) > 0 for δ ≠ 0 and V (x, 0) = 0,
homogeneity: V (x, αδ) = αV (x, δ) for α > 0, and convexity: the
Hessian matrix of V 2 with respect to δ is positive-definite for all x.
In fact the homogeneity requirement can be relaxed, but we keep
it here because it simplifies certain statements.

3. Contraction conditions for limit cycles

In this section we introduce a transverse contraction condition
for an autonomous dynamical system (1). The condition is given in
terms of a Finsler function V (x, δ). For most of this paper, we will
assume a Riemannian metric V (x, δ) :=

√
δ′M(x)δ where M(x) is

positive-definite for all x; however, the results of this section hold
for more general Finsler metrics [22,13,23].

Definition 1. A system of the form (1) is said to be transverse con-
tracting with rate λ > 0 on a set K ⊂ M if there exists a Finsler
function V (x, δ) satisfying

∂V (x, δ)
∂x

f (x)+
∂V (x, δ)
∂δ

∂ f (x)
∂x

δ ≤ −λV (x, δ), (2)

for all δ ≠ 0 such that ∂V
∂δ

f (x) = 0.
Note that the latter condition is a form of ‘‘transversality’’ of δ

to the flow of the system. In the particular case that V (x, δ) :=√
δ′M(x)δ, it is true if δ′M(x)f (x) = 0, i.e. δ and f (x) are orthog-

onal with respect to the metric M(x). If transverse contraction is
indicatedwithout specifying a rate λ, then it is meant that the con-
dition above holds for some λ > 0.

Theorem 1. Let K ⊂ Rn be compact, smoothly path-connected,
and strictly forward invariant. If (1) is transverse contracting on K
with rate λ > 0 then for every two solutions x1 and x2 with initial
conditions in K there exists time reparametrisations τ(t) such that
x1(t) → x2(τ (t)) as t → ∞. Furthermore, the convergence is expo-
nential with rate λ.
Proof. By definition, there exists a smooth path between any two
points x1 ∈ K and x2 ∈ K that remains in K . Such a path can be
considered as a smooth mapping γ : [0, 1] → K with γ (0) = x1
and γ (1) = x2. We assume that paths are parametrised so that
∂γ (s)
∂s ≠ 0 for all s.

Denote by Γ (x1, x2) the set of all such smooth paths between
x1 and x2 remaining in K and associate with each a length

L(γ ) =

 1

0
V

γ (s),

∂

∂s
γ (s)


ds

and consider the Riemann–Finsler distance between x1 and x2:

d(x1, x2) = min
γ∈Γ (x1,x2)

L(γ ). (3)

A minimizing curve γ is guaranteed to exist by the Hopf–Rinow
theorem [22].

Let us consider a path parametrised both in s and time t : γ
(s, t), with the property that γ (s, t0) is theminimiser in (3) for two
points x1(t0) and x2(t0). Now, let us introduce at every point s ∈

[0, 1] and t ≥ t0 a smooth ‘‘speed scale’’ α(s, t) > 0. That is, at
each point γ (s, t)we have

d
dt
γ (s, t) = α(s, t)f (γ (s, t))

with boundary conditions α(0, t) = 1 and α(s, 0) = 1. Now, by
definition of the distance,

d
dt

d(x1(t), x2(τ (t))) ≤

 1

0


d
dt

V

γ (s, t),

∂

∂s
γ (s, t)


ds.

A sufficient condition for decrease of distance is decrease of the in-
tegrand pointwise:

d
dt

V

γ (s, t),

∂

∂s
γ (s, t)


=
∂V (x, δ)
∂x

ẋ +
∂V (x, δ)
∂δ

δ̇ < 0

evaluated at x = γ (s, t) and δ =
∂
∂sγ (s, t), i.e. with

ẋ = α(s, t)f (γ (s, t)),

δ̇ =
d
dt
∂

∂s
γ (s, t) =

∂

∂s
(α(s, t)f (γ (s, t)))

=
∂α

∂s
f (γ (s, t))+ α(s, t)

∂ f
∂x
∂γ

∂s
.

Hence decrease of distance can be guaranteed if

∂V
∂x

f (x)+
∂V
∂δ


zf (x)+

∂ f
∂x
δ


< 0 (4)

where the above has been normalised by α(s, t) > 0, which does
not affect the sign of the inequality, and where z =

1
α(s,t)

∂α
∂s is a

scalar. Considering z as a ‘‘control input’’ which can be freely cho-
sen, it is obviously easy to achieve the above inequality by choice
of z except when ∂V

∂δ
f (x) ≠ 0, for which the system must be

‘‘naturally’’ contracting, which is the definition of transverse con-
traction (2).

The time reparametrisation τ(t) is constructed by integrat-
ing α(1, t) with respect to time. The existence of a monotonic
reparametrisation is straightforward to show and we omit the
details. �

Remark 1. Stability under time reparametrisation is sometimes
referred to as Zhukovsky stability and has been used previously to
study limit cycle stability, see e.g. [24,18,25,26,10], and apparently
goes back to Poincaré in its essential argument [21]. It is known
that systems satisfying such a property have limit cycles [25], but
we include a proof here since it is straightforward using the con-
structions in the previous theorem.

Theorem 2. If the conditions of Theorem 1 are satisfied, then all so-
lutions starting with x(0) ∈ K converge to a unique limit cycle. Fur-
thermore, convergence is exponential with rate λ and has the property
of asymptotic phase: i.e. for any initial conditions x1(0), x2(0), there
exists a fixed τ such that x1(t) → x2(t + τ) exponentially.
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