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a b s t r a c t

This note presents a new analytical solution to the problem of pole placement via constant output
feedback under the condition m + p ≥ n, where n, m, and p are the number of states, inputs and
outputs, respectively. The approach is based upon parametric eigenstructure assignment of linear time-
invariantmultivariable systems in combinationwith a special explicit formulation of the pole assignment
equations. Thus, the resulting analytical solution explicitly offers all remainingmp−n degrees of freedom
beyond eigenvalue assignment which can be used for additional design goals such as response shaping,
minimizing the norm of the feedback matrix, and robust control, respectively.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Besides optimal control the pole placement approach is one of
the most popular design methods in linear control theory. While
in the case of complete state feedback the problem of finding a
constant feedback matrix which assigns an arbitrary selected set
of self-conjugate complex numbers as spectrum of the closed-
loop system is completely solved (see e.g. [1]) to deal with static
output feedback is much harder. This is mainly due to the fact
that in multi-input–multi-output (MIMO) systems pole placement
is a nonlinear problem and demands solving a set of nonlinear
algebraic equations in the unknown gain parameters whose
solution may not exist in the case of output feedback. However,
for controllable systems and state feedback these equations always
have a solution [1] and in MIMO systems this solution is even not
unique. In this case, there are additional degrees-of-freedom (dof)
beyond pole placement which can be used for further design goals
such as eigenvector or eigenstructure assignment.

Based on the results in [2] on eigenstructure assignment in
the case of state feedback several solutions to the problem of
pole placement by static output feedback have been reported
during the last three decades [3–10] and just recently another new
approach has been presented in [11,12]. Most of them rely on the
fundamental result of [13,14], which is also known as Kimura’s
condition, that for the generic system all closed-loop poles can be
assigned almost arbitrary ifm+p ≥ n+1where n,m, p denote the
system order and the number of inputs and outputs, respectively.
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On the other hand in [15] it was shown that a necessary and
sufficient condition for arbitrary pole assignment for the generic
system is mp ≥ n if complex feedback gains are allowed and
finally in [16,17] Wang presented the important result that for
real static output feedback mp > n is sufficient for generic pole
assignability. However, up to now there is no closed-form solution
to the problem of finding a real feedback under Wang’s condition
which is certainly due to the fact that in general pole placement
via static output feedback is N P -hard [18]. Moreover, if mp > n
one is interested in a solution which encompasses all remaining
mp − n dof beyond pole placement. Meanwhile, under Kimura’s
condition there exist several design techniques (see e.g. [6,7,10])
which offer such a parametric solution and in [11] the authors
presented a new noniterative approach to pole placement based
on eigenstructure assignment which improves Kimura’s sufficient
condition to m + p ≥ n while in [12] this result was extended to
even encompass some cases for whichm+ p < n < mp. A general
overview on static output feedback which covers several different
design techniques can be found in [19].

In this note, we seize the suggestions from [10,11] and by com-
bining them with the results from [20] we are able to develop
a straightforward noniterative procedure for pole placement by
parametric output feedback. In Section 2, after statement of the
problem the fundamental properties of eigenstructure assignment
are shortly reviewed and for m = p = 2 an analytical expression
for the direct solution of the pole assignment equation is devel-
oped. Based on these preliminary results a closed-form parametric
solution to the problemof pole placement by constant output feed-
back under the conditionm+p ≥ n is presented in Section 3while
Section 4 gives a numerical example before themain results of this
note are summarized in Section 5.
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2. Problem statement and preliminaries

In this section, the problem of pole placement by constant
output feedback is stated and some fundamental results on
eigenstructure assignment as well as a formulation of the problem
based on an explicit expression of the closed loop characteristic
polynomial are shortly reviewed.

Consider the completely controllable and observable linear
time-invariant multivariable system

ẋ = Ax + Bu, y = Cx (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. The real constant matrices
A, B, and C are of appropriate dimensions and it is assumed that
rank(B) = m ≥ 2 and rank(C) = p ≥ 2. If the real constant output
feedback

u = Ky (2)

is applied to (1) the closed-loop state equation becomes

ẋ = (A + BKC)x = Acx. (3)

The problem of pole placement or eigenvalue assignment by
constant output feedback then means to find the real matrix K in
(2) such that the spectrum σ {Ac} of Ac coincides with the given set
Λ = {λ1, λ2, . . . , λn} of self-conjugate complex values.

2.1. Eigenstructure assignment

In the context of eigenstructure assignment by constant output
feedback the set Λ = {Λ1, Λ2} of closed-loop eigenvalues is
usually divided into two self-conjugate sets of arbitrarily selected
distinct complex numbers Λ1 = {λ1, λ2, . . . , λr} and Λ2 =

{λr+1, λr+2, . . . , λn}. Then in a first step the set Λ1 is associated
with the spectrum of Ac and the closed-loop eigenvectors vi via

Acvi = (A + BKC)vi = λivi, i = 1, . . . , r (4)

which can also be written as

[A − λiI, B]


vi
KCvi


= 0, i = 1, . . . , r. (5)

If (A, B) is completely controllable rank[A − λiI, B] = n, ∀λi ∈

C [21] and thus the right nullspace

ker{[A − λiI, B]} = ker{Si} =


Ni
Mi


(6)

is of dimension m. Then the closed-loop eigenvectors vi and the
input directions

hi = KCvi (7)

can be parameterized by nonzero parameter vectors qi ∈ Cm (see
e.g. [2,10,11])

vi = Niqi (8)
hi = Miqi. (9)

Remark 1. Since the columns of ker{Si} can arbitrarily be scaled
by any nonzero scalar the eigenvectors vi and input directions hi in
(8), (9) are only determined except for their length and so are the
parameter vectors qi. Thus, each parameter vector only provides
(m − 1) dof to assign the corresponding eigenvector vi within the
m-dimensional subspace of Cn spanned by the columns of Ni [2].
Moreover, it directly follows from elementary matrix theory that
for a self-conjugate complex pair λi1 = λ∗

i2 in the set Λ1 we also
have vi1 = v∗

i2,Ni1 = N∗

i2 and this implies qi1 = q∗

i2. Therefore, the
parameter vectors qi associated with the setΛ1 are not completely
free but must also constitute a self-conjugate set. However, this
does not reduce the available dof provided by the set qi, i =

1, . . . , r since a complex qi offers m − 1 complex and 2(m − 1)
real dof, respectively.

Nowwe come back to (8), (9) and substitute them into (7) to get
the homogeneous equation

(Mi − KCNi)qi = 0 (10)

which has a nonzero solution qi ≠ 0 iff

det(Mi − KCNi) = 0. (11)

Obviously, (11) can be used to assign λi as closed-loop pole [22]
while the parameter vector qi associated with λi via (10) then
explicitly offers (m − 1) additional dof beyond eigenvalue
assignment. Thus, to assign the r numbers in Λ1 as closed-loop
eigenvalues K must solve the linear equation

K(CVr) = Q̃r (12)

where the qi ≠ 0, i = 1, . . . , r are considered as free parameters
and

Vr = [N1q1, . . . ,Nrqr ] (13)

Q̃r = [M1q1, . . . ,Mrqr ]. (14)

Obviously, a solution of (12) exists for almost any choice of the set
Λ1 and qi ≠ 0, i = 1, . . . , r if the condition rank(CVr) = r holds
which in turn implies r ≤ p. For r = p, the usual choice in the lit-
erature on eigenstructure assignment, the solution K = Q̃r(CVr)

−1

of (12) explicitly exhibits all mp dof provided by K ∈ Rm×p in the
shape of the p eigenvalues from Λ1 and the p corresponding pa-
rameter vectors qi ≠ 0, i = 1, . . . , p. Thus, to assign the remaining
n−p eigenvalues inΛ2 the parameter vectors qi ≠ 0, i = 1, . . . , p
are not arbitrary butmust undergo some restrictions. In the follow-
ing this can be seen if all investigations carried out so far with right
eigenvectors vi, input directions hi and (right) parameter vectors qi
are accomplishedwith left eigenvectorsw′

j , output directions l
′

j and
corresponding (left) parameter vectors z ′

j for the eigenvalues inΛ2
where the prime denotes transpose. To this end instead of (4) we
start with the relation

w′

jAc = w′

j(A + BKC) = λjw
′

j, j = r + 1, . . . , n (15)

or

[w′

j, w
′

jBK ]


A − λjI

C


= 0′, j = r + 1, . . . , n (16)

where

rank

A − λjI

C


= rank(Tj) = n, ∀λj ∈ C

if (A, C) is an observable pair [21]. Therefore, the p-dimensional
left nullspace of Tj can be calculated from

[Dj, Ej] · Tj = 0 (17)

and the closed-loop left eigenvectors w′

j and output directions

l′j = w′

jBK (18)

are parameterized by nonzero left parameter vectors z ′

j ∈ Cp

w′

j = z ′

jDj (19)

l′j = z ′

jEj. (20)

Finally, from (18)–(20) we get the dual version of (10)

z ′

j (Ej − DjBK) = 0′ (21)

with the corresponding necessary condition

det(Ej − DjBK) = 0 (22)

and

(W ′

n−rB)K = Z̃ ′

n−r (23)
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