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Abstract

We consider the problem of local asymptotic feedback stabilization of a control system ẋ = f (x, u) defined in Rn to a compact, connected,
oriented, embedded codimension one submanifold P of Rn using a continuous feedback law. This generalizes the problem of local asymptotic
feedback stabilization to a point which has been previously considered in the control theory literature. It is natural to expect the topology of P
to play a role in deciding whether or not local asymptotic stabilization to P of the system ẋ = f (x, u) is feasible via continuous feedback, and
our aim in this paper is precisely to outline necessary conditions on the topology of P for stabilization via continuous feedback to be achievable.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider Brockett’s non-holonomic integrator, given by

{
ẋ = u,

ẏ = v,

ż = xv − yu,

where (x, y, z) ∈ R3 and (u, v) ∈ R2. It is well known [1,2]
that there exists no continuous feedback law that asymptotically
stabilizes this system to the origin of R3. On the other hand,
the continuous feedback law given by

(x, y, z) �→ (u, v) = (−y − x(x2 + y2 − 1),

x − y(x2 + y2 − 1)) (1)

locally asymptotically stabilizes Brockett’s non-holonomic in-
tegrator to the unit cylinder {(x, y, z) ∈ R3|x2 +y2 =1} of R3,
as is seen for example by choosing (x, y, z) �→ V (x, y, z) =
(x2 + y2 − 1)2 as a Lyapunov function. In a similar vein, there
exists no continuous feedback law that locally asymptotically

∗ Fax: +1 613 533 2964.
E-mail address: mansouri@mast.queensu.ca.

0167-6911/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2007.03.001

stabilizes the system{
ẋ = u,

ẏ = v,

ż = (yu − xv)ez,

to the origin of R3; yet, the feedback law given in Eq. (1)
locally asymptotically stabilizes this system to the unit circle
{(x, y, 0) ∈ R3|x2 + y2 = 1} in the x − y-plane.

These observations naturally lead to the following question:
Assume a given system in Rn cannot be locally asymptotically
stabilized to any point using a continuous feedback law; is it
possible nevertheless to find a continuous feedback law that
does locally asymptotically stabilize it to some other subset of
Rn? In particular, is it possible to find a continuous feedback
law that locally asymptotically stabilizes the system to a given
submanifold of Rn? The motivation for studying this problem
arises from the fact that stabilization to a submanifold can be
considered as the next best thing for a system that cannot be
stabilized to a point. In other words, if a system cannot be
brought to equilibrium using continuous feedback, it may be
possible nevertheless to have it exhibit some other behavior
of interest. In the case of Brockett’s non-holonomic integrator,
for example, knowing that local asymptotic stabilization to a
point via continuous feedback is not feasible, one could ask
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whether stabilization to a sphere in R3 instead is feasible. We
shall see in this paper that the topology of the sphere disallows
the existence of such a feedback law.

Let � be an open subset of Rn × Rm, and let f : � → Rn

be a continuous map. Let x �→ u(x) ∈ Rm be a continuous
feedback law. Let P be a compact p-dimensional embedded
submanifold of Rn, invariant for the system ẋ = f (x, u(x)),
that is all trajectories of this ordinary differential equation with
initial condition in P remain in P. f defines the open-loop control
system, whereas g defines the closed-loop control system. We
start with the following definitions, borrowed from [7]:

Definition 1. The invariant submanifold P is said to be an
asymptotically stable submanifold for the pair (f, u) if for every
open neighborhood U of P, there exists an open neighborhood
U ′ ⊂ U of P such that every trajectory t �→ x(t) of the system
ẋ(t) = f (x(t), u(x(t))) with initial point x ∈ U ′ remains in U
for all time and such that d(x(t), P ) → 0 as t → ∞ (where d
denotes Euclidean distance in Rn).

Definition 2. A C∞ function V : U �→ R on an open neigh-
borhood U ⊂ Rn of P that satisfies

1. V (x)�0∀x ∈ U and V (x) = 0 if and only if x ∈ P ,
2. d

dt
V (x(t)) < 0 on U\P ,

3. V tends to a constant (possibly infinite) value on the bound-
ary �U of U in Rn,

will be called a Lyapunov function for the triple (f, u, P ).

We shall make use of the following notion and result from
differential topology. We refer the reader to [4] for more general
statements.

Definition 3. A tubular neighborhood of P in Rn is a pair
(�, �), where � = (�, E, P ) is a real vector bundle over P and
�: E → Rn is an embedding such that:

1. �|P = 1P , where P is identified with the zero section of E.
2. �(E) is an open neighborhood of P in Rn.

Theorem 1. Let P ⊂ Rn be an embedded submanifold. Then
P has a tubular neighborhood in Rn.

Remark. If, in addition, P is assumed to be oriented and of
codimension one, then the normal bundle of P in Rn is trivial,
and in that case we can assume with no loss of generality that the
vector bundle E of Definition 3 is the trivial bundle E=P ×R.

We shall make use of the following results of [7].

Theorem 2. P is an asymptotically stable submanifold of the
pair (f, u) if and only if there exists a Lyapunov function for
the triple (f, u, P ) defined on an open neighborhood of P.

Theorem 3. The level surfaces of a Lyapunov function for the
triple (f, u, P ) are homotopically equivalent to the boundary
of a closed tubular neighborhood of P.

Using these results, we shall state necessary conditions for
local asymptotic stabilization to a submanifold P of Rn. In all
that follows, we shall make the following assumption:

A1: P is a compact, connected, oriented, embedded submani-
fold of Rn of codimension one.

Remark. Under Assumption A1, the normal bundle of P in Rn

is trivial, and since the tangent bundle of Rn itself is trivial, the
Stiefel–Whitney classes {wi(T P )}n−1

i=1 of the tangent bundle TP
of P are zero. Hence, all the Stiefel–Whitney numbers of TP
are zero as well. It then follows from Thom’s theorem [5] that
P is the boundary of an open relatively compact submanifold
of Rn.

Following assumption A1, for all � > 0, we shall denote by P�
the image under the embedding � of the open subset P×]−�, �[
of E. We shall denote by �P� the boundary of P� in Rn; since
� is an embedding, �P� =�+P� ∪�−P�, where �+P� =�(P ×
{−�}) and �−P� = �(P × {�}); �P� is therefore the union
of two disjoint submanifolds, each of which is diffeomorphic
to P. Following the previous remark, both �+P� and �−P�
are boundaries of open submanifolds of Rn; modifying � if
necessary, we shall assume �+P� is the “outer” boundary of
P�, i.e. that �−P� is included in the open submanifold of Rn

of which �+P�is the boundary.

2. Necessary conditions

Assume P is an asymptotically stable submanifold for the
pair (f, u); it follows from Theorem 2 that there exists an
open neighborhood U of P in Rn and a Lyapunov function
V : U → R for the triple (f, u, P ) on U. Since P is assumed to
be compact, we can, without loss of generality, choose U to be
a relatively compact open neighborhood of P in Rn. Further-
more, since d

dt
V (x(t)) < 0 on U\P , we have in particular that

f (x, u(x)) �= 0 ∀x ∈ U\P . We have:

Lemma 1. ∀c ∈ V (U\P), V −1(c) is an oriented submanifold
of Rn with two connected components. Furthermore, restricting
the open neighborhood U of P if necessary (and hence the
domain of the Lyapunov function V) there exists c′ > 0 small
enough such that ∀c ∈]0, c′[, V −1(c) is compact.

Proof. The restriction of the mapping V to U\P has constant
rank 1. Indeed, assume to the contrary, that at some point p ∈
U\P , we have dV (p) = 0. Since p /∈ P , we have V (p) > 0.
Then, �V

�xi
(p) = 0 for all i = 1, . . . , n. Consider the trajectory

t �→ x(t) of the system ẋ(t) = f (x(t), u(t)) with initial condi-
tion x(t0)=p. Then d

dt
|t=t0V (x(t))=0, contradicting assump-

tion (2) in Definition 2. Hence, dV is non-zero at all points of
U\P , from which it follows that V has constant rank 1 on U\P .
It follows from the constant rank theorem that ∀c ∈ V (U\P),
V −1(c) is a submanifold of U\P , and since U\P is an open
submanifold of Rn, it follows that V −1(c) is a submanifold
of Rn; furthermore, since Rn is oriented, so is V −1(c). Since,
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