

Available online at www.sciencedirect.com



Systems & Control Letters 56 (2007) 525-528



# Local asymptotic feedback stabilization to a submanifold: Topological conditions

## Abdol-Reza Mansouri\*

Department of Mathematics and Statistics, Queen's University, Kingston, Ont., Canada K7L 3N6

Received 7 November 2006; received in revised form 12 March 2007; accepted 17 March 2007 Available online 30 April 2007

#### **Abstract**

We consider the problem of local asymptotic feedback stabilization of a control system  $\dot{x}=f(x,u)$  defined in  $\mathbb{R}^n$  to a compact, connected, oriented, embedded codimension one submanifold P of  $\mathbb{R}^n$  using a continuous feedback law. This generalizes the problem of local asymptotic feedback stabilization to a point which has been previously considered in the control theory literature. It is natural to expect the topology of P to play a role in deciding whether or not local asymptotic stabilization to P of the system  $\dot{x}=f(x,u)$  is feasible via continuous feedback, and our aim in this paper is precisely to outline necessary conditions on the topology of P for stabilization via continuous feedback to be achievable. © 2007 Elsevier B.V. All rights reserved.

Keywords: Feedback stabilization; Homology theory; Degree theory

#### 1. Introduction

Consider Brockett's non-holonomic integrator, given by

$$\begin{cases} \dot{x} = u, \\ \dot{y} = v, \\ \dot{z} = xv - yu, \end{cases}$$

where  $(x, y, z) \in \mathbb{R}^3$  and  $(u, v) \in \mathbb{R}^2$ . It is well known [1,2] that there exists no continuous feedback law that asymptotically stabilizes this system to the origin of  $\mathbb{R}^3$ . On the other hand, the continuous feedback law given by

$$(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$$
  
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1),$   
 $(x, y, z) \mapsto (u, v) = (-y - x(x^2 + y^2 - 1))$ 

locally asymptotically stabilizes Brockett's non-holonomic integrator to the unit cylinder  $\{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}$  of  $\mathbb{R}^3$ , as is seen for example by choosing  $(x, y, z) \mapsto V(x, y, z) = (x^2 + y^2 - 1)^2$  as a Lyapunov function. In a similar vein, there exists no continuous feedback law that locally asymptotically

E-mail address: mansouri@mast.queensu.ca.

stabilizes the system

$$\begin{cases} \dot{x} = u, \\ \dot{y} = v, \\ \dot{z} = (yu - xv)e^z \end{cases}$$

to the origin of  $\mathbb{R}^3$ ; yet, the feedback law given in Eq. (1) locally asymptotically stabilizes this system to the unit circle  $\{(x, y, 0) \in \mathbb{R}^3 | x^2 + y^2 = 1\}$  in the x - y-plane.

These observations naturally lead to the following question: Assume a given system in  $\mathbb{R}^n$  cannot be locally asymptotically stabilized to any point using a continuous feedback law; is it possible nevertheless to find a continuous feedback law that does locally asymptotically stabilize it to some other subset of  $\mathbb{R}^n$ ? In particular, is it possible to find a continuous feedback law that locally asymptotically stabilizes the system to a given submanifold of  $\mathbb{R}^n$ ? The motivation for studying this problem arises from the fact that stabilization to a submanifold can be considered as the next best thing for a system that cannot be stabilized to a point. In other words, if a system cannot be brought to equilibrium using continuous feedback, it may be possible nevertheless to have it exhibit some other behavior of interest. In the case of Brockett's non-holonomic integrator, for example, knowing that local asymptotic stabilization to a point via continuous feedback is not feasible, one could ask

<sup>\*</sup> Fax: +1 613 533 2964.

whether stabilization to a sphere in  $\mathbb{R}^3$  instead is feasible. We shall see in this paper that the topology of the sphere disallows the existence of such a feedback law.

Let  $\Omega$  be an open subset of  $\mathbb{R}^n \times \mathbb{R}^m$ , and let  $f \colon \Omega \to \mathbb{R}^n$  be a continuous map. Let  $x \mapsto u(x) \in \mathbb{R}^m$  be a continuous feedback law. Let P be a compact p-dimensional embedded submanifold of  $\mathbb{R}^n$ , invariant for the system  $\dot{x} = f(x, u(x))$ , that is all trajectories of this ordinary differential equation with initial condition in P remain in P. f defines the open-loop control system, whereas g defines the closed-loop control system. We start with the following definitions, borrowed from [7]:

**Definition 1.** The invariant submanifold P is said to be an asymptotically stable submanifold for the pair (f, u) if for every open neighborhood U of P, there exists an open neighborhood  $U' \subset U$  of P such that every trajectory  $t \mapsto x(t)$  of the system  $\dot{x}(t) = f(x(t), u(x(t)))$  with initial point  $x \in U'$  remains in U for all time and such that  $d(x(t), P) \to 0$  as  $t \to \infty$  (where d denotes Euclidean distance in  $\mathbb{R}^n$ ).

**Definition 2.** A  $C^{\infty}$  function  $V: U \mapsto \mathbb{R}$  on an open neighborhood  $U \subset \mathbb{R}^n$  of P that satisfies

- 1.  $V(x) \ge 0 \forall x \in U$  and V(x) = 0 if and only if  $x \in P$ ,
- 2.  $\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) < 0$  on  $U \setminus P$ ,
- 3. V tends to a constant (possibly infinite) value on the boundary  $\partial U$  of U in  $\mathbb{R}^n$ ,

will be called a Lyapunov function for the triple (f, u, P).

We shall make use of the following notion and result from differential topology. We refer the reader to [4] for more general statements.

**Definition 3.** A tubular neighborhood of P in  $\mathbb{R}^n$  is a pair  $(\phi, \zeta)$ , where  $\zeta = (\pi, E, P)$  is a real vector bundle over P and  $\phi \colon E \to \mathbb{R}^n$  is an embedding such that:

- 1.  $\phi|_P = 1_P$ , where P is identified with the zero section of E.
- 2.  $\phi(E)$  is an open neighborhood of P in  $\mathbb{R}^n$ .

**Theorem 1.** Let  $P \subset \mathbb{R}^n$  be an embedded submanifold. Then P has a tubular neighborhood in  $\mathbb{R}^n$ .

**Remark.** If, in addition, P is assumed to be oriented and of codimension one, then the normal bundle of P in  $\mathbb{R}^n$  is trivial, and in that case we can assume with no loss of generality that the vector bundle E of Definition 3 is the trivial bundle  $E = P \times \mathbb{R}$ .

We shall make use of the following results of [7].

**Theorem 2.** P is an asymptotically stable submanifold of the pair (f, u) if and only if there exists a Lyapunov function for the triple (f, u, P) defined on an open neighborhood of P.

**Theorem 3.** The level surfaces of a Lyapunov function for the triple (f, u, P) are homotopically equivalent to the boundary of a closed tubular neighborhood of P.

Using these results, we shall state necessary conditions for local asymptotic stabilization to a submanifold P of  $\mathbb{R}^n$ . In all that follows, we shall make the following assumption:

A1: P is a compact, connected, oriented, embedded submanifold of  $\mathbb{R}^n$  of codimension one.

**Remark.** Under Assumption A1, the normal bundle of P in  $\mathbb{R}^n$  is trivial, and since the tangent bundle of  $\mathbb{R}^n$  itself is trivial, the Stiefel–Whitney classes  $\{w_i(TP)\}_{i=1}^{n-1}$  of the tangent bundle TP of P are zero. Hence, all the Stiefel–Whitney numbers of TP are zero as well. It then follows from Thom's theorem [5] that P is the boundary of an open relatively compact submanifold of  $\mathbb{R}^n$ 

Following assumption A1, for all  $\delta > 0$ , we shall denote by  $P_{\delta}$  the image under the embedding  $\phi$  of the open subset  $P \times ]-\delta$ ,  $\delta [$  of E. We shall denote by  $\partial P_{\delta}$  the boundary of  $P_{\delta}$  in  $\mathbb{R}^n$ ; since  $\phi$  is an embedding,  $\partial P_{\delta} = \partial^+ P_{\delta} \cup \partial^- P_{\delta}$ , where  $\partial^+ P_{\delta} = \phi(P \times \{-\delta\})$  and  $\partial^- P_{\delta} = \phi(P \times \{\delta\})$ ;  $\partial P_{\delta}$  is therefore the union of two disjoint submanifolds, each of which is diffeomorphic to P. Following the previous remark, both  $\partial^+ P_{\delta}$  and  $\partial^- P_{\delta}$  are boundaries of open submanifolds of  $\mathbb{R}^n$ ; modifying  $\phi$  if necessary, we shall assume  $\partial^+ P_{\delta}$  is the "outer" boundary of  $P_{\delta}$ , i.e. that  $\partial^- P_{\delta}$  is included in the open submanifold of  $\mathbb{R}^n$  of which  $\partial^+ P_{\delta}$  is the boundary.

#### 2. Necessary conditions

Assume P is an asymptotically stable submanifold for the pair (f, u); it follows from Theorem 2 that there exists an open neighborhood U of P in  $\mathbb{R}^n$  and a Lyapunov function  $V \colon U \to \mathbb{R}$  for the triple (f, u, P) on U. Since P is assumed to be compact, we can, without loss of generality, choose U to be a relatively compact open neighborhood of P in  $\mathbb{R}^n$ . Furthermore, since  $\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) < 0$  on  $U \setminus P$ , we have in particular that  $f(x, u(x)) \neq 0 \ \forall x \in U \setminus P$ . We have:

**Lemma 1.**  $\forall c \in V(U \setminus P), \ V^{-1}(c)$  is an oriented submanifold of  $\mathbb{R}^n$  with two connected components. Furthermore, restricting the open neighborhood U of P if necessary (and hence the domain of the Lyapunov function V) there exists c' > 0 small enough such that  $\forall c \in ]0, c'[, V^{-1}(c)$  is compact.

**Proof.** The restriction of the mapping V to  $U \setminus P$  has constant rank 1. Indeed, assume to the contrary, that at some point  $p \in U \setminus P$ , we have dV(p) = 0. Since  $p \notin P$ , we have V(p) > 0. Then,  $\frac{\partial V}{\partial x_i}(p) = 0$  for all  $i = 1, \ldots, n$ . Consider the trajectory  $t \mapsto x(t)$  of the system  $\dot{x}(t) = f(x(t), u(t))$  with initial condition  $x(t_0) = p$ . Then  $\frac{d}{dt}|_{t=t_0}V(x(t)) = 0$ , contradicting assumption (2) in Definition 2. Hence, dV is non-zero at all points of  $U \setminus P$ , from which it follows that V has constant rank 1 on  $U \setminus P$ . It follows from the constant rank theorem that  $\forall c \in V(U \setminus P)$ ,  $V^{-1}(c)$  is a submanifold of  $U \setminus P$ , and since  $U \setminus P$  is an open submanifold of  $\mathbb{R}^n$ , it follows that  $V^{-1}(c)$  is a submanifold of  $\mathbb{R}^n$ ; furthermore, since  $\mathbb{R}^n$  is oriented, so is  $V^{-1}(c)$ . Since,

### Download English Version:

# https://daneshyari.com/en/article/752284

Download Persian Version:

https://daneshyari.com/article/752284

<u>Daneshyari.com</u>