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a b s t r a c t

We consider a basic model of a dynamical distribution network, modeled as a directed graph with
storage variables corresponding to every vertex and flow inputs corresponding to every edge, subject
to unknown but constant inflows and outflows. As a preparatory result it is shown how a distributed
proportional–integral controller structure, associatingwith every edge of the graph a controller state, will
regulate the state variables of the vertices, irrespective of the unknown constant inflows and outflows,
in the sense that the storage variables converge to the same value (load balancing or consensus). This
will be proved by identifying the closed-loop system as a port-Hamiltonian system, and modifying the
Hamiltonian function into a Lyapunov function, dependent on the value of the vector of constant inflows
and outflows. In themain part of the paper the same problemwill be addressed for the case that the input
flow variables are constrained to take value in an arbitrary interval.Wewill derive sufficient and necessary
conditions for load balancing, which only depend on the structure of the network in relationwith the flow
constraints.

Crown Copyright© 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study a basic model for the dynamics of a dis-
tribution network. Identifying the network with a directed graph
we associate with every vertex of the graph a state variable corre-
sponding to storage, and with every edge a control input variable
corresponding to flow, which is constrained to take value in a given
closed interval. Furthermore, some of the vertices serve as termi-
nals where an unknown but constant flow may enter or leave the
network in such a way that the total sum of inflows and outflows
is equal to zero. The control problem to be studied is to derive nec-
essary and sufficient conditions for a distributed control structure
(the control input corresponding to a given edge only depending on
the difference of the state variables of the adjacent vertices) which
will ensure that the state variables associated to all vertices will
converge to the same value equal to the average of the initial con-
dition, irrespective of the values of the constant unknown inflows
and outflows.

The structure of the paper is as follows. Some preliminaries and
notations will be given in Section 2. In Section 3 we will show how
in the absence of constraints on the flow input variables a dis-
tributed proportional–integral (PI) controller structure, associating
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with every edge of the graph a controller state, will solve the prob-
lem if and only if the graph isweakly connected. Thiswill be shown
by identifying the closed-loop system as a port-Hamiltonian sys-
tem, with state variables associated both to the vertices and the
edges of the graph, in line with the general definition of port-
Hamiltonian systems on graphs [1–4]; see also [5,6]. The proof of
asymptotic load balancing will be given by modifying, depending
on the vector of constant inflows and outflows, the total Hamil-
tonian function into a Lyapunov function. In the examples the
obtained PI-controller often has a clear physical interpretation,
emulating the physical action of adding energy storage and damp-
ing to the edges.

The main contribution of the paper resides in Sections 4 and 5,
where the same problem is addressed for the case of constraints on
the flow input variables. In Section 4 it will be shown that in the
case of zero inflow and outflow the state variables of the vertices
converge to the same value if and only if the network is strongly
connected. This will be shown by constructing a C1 Lyapunov
function based on the total Hamiltonian and the constraint values.
This same construction will be extended in Section 5 to the case
of nonzero inflows and outflows, leading to the result that in this
case asymptotic load balancing is reached if and only the graph is
not only strongly connected but also balanced. Finally, Section 6
contains the conclusions.

Some preliminary results, in particular concerning Section 3,
have been already reported before in [7].
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2. Preliminaries and notations

First we recall some standard definitions regarding directed
graphs, as can be found e.g. in [8]. A directed graph G consists of
a finite set V of vertices and a finite set E of edges, together with
a mapping from E to the set of ordered pairs of V , where no self-
loops are allowed. Thus to any edge e ∈ E there corresponds an
ordered pair (v, w) ∈ V × V (with v ≠ w), representing the tail
vertex v and the head vertex w of this edge.

A directed graph is completely specified by its incidence matrix
B, which is an n × mmatrix, n being the number of vertices andm
being the number of edges, with (i, j)th element equal to 1 if the
jth edge is towards vertex i, and equal to −1 if the jth edge is orig-
inating from vertex i, and 0 otherwise. Since we will only consider
the directed graphs in this paper ‘graph’ will throughout mean ‘di-
rected graph’ in the sequel. A directed graph is strongly connected
if it is possible to reach any vertex starting from any other vertex
by traversing edges following their directions. A directed graph is
calledweakly connected if it is possible to reach any vertex from ev-
ery other vertex using the edgesnot taking into account their direc-
tion. A graph is weakly connected if and only if ker BT

= span 1n.
Here 1n denotes the n-dimensional vector with all elements equal
to 1. A graph that is not weakly connected falls apart into a number
of weakly connected subgraphs, called the connected components.
The number of connected components is equal to dim ker BT . For
each vertex, the number of incoming edges is called the in-degree
of the vertex and the number of outgoing edges its out-degree. A
graph is called balanced if for every vertex their in-degree and out-
degree of every vertex are equal. A graph is balanced if and only if
1n ∈ ker B.

Given a graph, we define its vertex space as the vector space
of all functions from V to some linear space R. In the rest of this
paper we will take for simplicity R = R, in which case the vertex
space can be identified with Rn. Similarly, we define its edge space
as the vector space of all functions from E to R = R, which can be
identified with Rm. In this way, the incidencematrix B of the graph
can be also regarded as the matrix representation of a linear map
from the edge space Rm to the vertex space Rn.
Notation: for a, b ∈ Rm the notation a 6 bwill denote elementwise
inequality ai ≤ bi, i = 1, . . . ,m. For ai < bi, i = 1, . . . ,m the
multidimensional saturation function sat(x; a, b) : Rm

→ Rm is
defined as

sat(x; a, b)i =

ai if xi ≤ ai,
xi if ai < xi < bi,
bi if xi ≥ bi,

i = 1, . . . ,m. (1)

3. A dynamic network model with PI controller

Let us consider the following dynamical system defined on the
graph G

ẋ = Bu, x ∈ Rn, u ∈ Rm

y = BT ∂H
∂x

(x), y ∈ Rm,
(2)

where H : Rn
→ R is any differentiable function, and ∂H

∂x (x) de-
notes the column vector of partial derivatives of H . Here the ith
element xi of the state vector x is the state variable associated to
the ith vertex, while uj is a flow input variable associated to the jth
edge of the graph. System (2) defines a port-Hamiltonian system
[9,10], satisfying the energy-balance

d
dt

H = uTy. (3)

Note that geometrically its state space is the vertex space, its input
space is the edge space, while its output space is the dual of the
edge space.

Example 3.1 (Hydraulic Network). Consider a hydraulic network,
modeled as a directed graph with vertices (nodes) corresponding
to reservoirs, and edges (branches) corresponding to pipes. Let xi
be the amount of water stored at vertex i, and uj the flow through
edge j. Then the mass-balance of the network is summarized in

ẋ = Bu, (4)

where B is the incidence matrix of the graph. Let furthermore
H(x) denote the stored energy in the reservoirs (e.g., gravitational
energy). Then Pi :=

∂H
∂xi

(x), i = 1, . . . , n, are the pressures at the
vertices, and the output vector y = BT ∂H

∂x (x) is the vector whose
jth element is the pressure difference Pi − Pk across the jth edge
linking vertex k to vertex i.

As a next step we will extend the dynamical system (2) with a
vector d of inflows and outflows

ẋ = Bu + Ed, x ∈ Rn, u ∈ Rm, d ∈ Rk

y = BT ∂H
∂x

(x), y ∈ Rm,
(5)

with E an n× kmatrix whose columns consist of exactly one entry
equal to 1 (inflow) or −1 (outflow), while the rest of the elements
is zero. Thus E specifies the k terminal vertices where flows can
enter or leave the network.

In this paper we will regard d as a vector of constant distur-
bances, and we want to investigate control schemes which ensure
asymptotic load balancing of the state vector x irrespective of the
(unknown) disturbance d. The simplest control possibility is to ap-
ply a proportional output feedback

u = −Ry = −RBT ∂H
∂x

(x), (6)

where R is a diagonal matrix with strictly positive diagonal el-
ements r1, . . . , rm. Note that this defines a decentralized control
scheme if H is of the form H(x) = H1(x1) + · · · + Hn(xn), in which
case the ith input as given by (6) equals ri times the difference of
the component of ∂H

∂x (x) corresponding to the head vertex of the ith
edge and the component of ∂H

∂x (x) corresponding to its tail vertex.
This control scheme leads to the closed-loop system

ẋ = −BRBT ∂H
∂x

(x) + Ed. (7)

In the case of zero in/outflows d = 0 this implies the energy-
balance

d
dt

H = −
∂TH
∂x

(x)BRBT ∂H
∂x

(x) ≤ 0. (8)

Hence if H is radially unbounded it follows that the system trajec-
tories of the closed-loop system (7) will converge to the set

E :=


x | BT ∂H

∂x
(x) = 0


(9)

and thus to the load balancing set

E =


x |

∂H
∂x

(x) = α1, α ∈ R


if and only if ker BT
= span{1}, or equivalently [8], if and only if

the graph is weakly connected.
In particular, for the standard Hamiltonian H(x) =

1
2∥x∥

2 this
means that the state variables xi(t), i = 1, . . . , n, converge to a
common value α as t → ∞. Since d

dt 1
T x(t) = 0 it follows that this

common value is given as α =
1
n

n
i=1 xi(0).

For d ≠ 0 proportional control u = −Ry will not be sufficient
to reach load balancing, since the disturbance d can only be atten-
uated at the expense of increasing the gains in the matrix R. Hence
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