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a b s t r a c t

In this paper, a new identification method for continuous-time models, which can handle various grey-
box structures and has strong robustness, is presented. The proposed method is based on an incremental
model update scheme and the projection onto the subspace which reflects the model structure. By utilis-
ing these schemes, robustness of other continuous-time system identification methods and versatility of
generic optimisation algorithms can be integrated into the proposedmethod. The effectiveness of the pro-
posed method is demonstrated through numerical examples related to a grey-box model in closed-loop
system and systems with unknown time-delay.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important issues in control system design
is to obtain an accurate model of the system to be controlled.
Although most of the system identification methods have been
based on discrete-time models, continuous-time ones have inher-
ent advantages for practical problems. One important advantage of
continuous-time models is that their structure closely reflects the
physical structure of target systems. For example, a continuous-
time model for the mass–spring–damper system shown in Fig. 1
can be written as

y(t) =
1

k+ dp+mp2
u(t), (1)

where p is the differential operator, i.e., py(t) = dy(t)
dt . As seen in (1),

physical quantities (such as mass, damper and spring coefficients)
directly appear in continuous-time models, and prior knowledge
about target systems is straightforwardly represented as models
with grey-box structure. On the other hand, a discrete-time model
for this system is

y(t) =
ts
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where q−1 denotes a unit-time (, ts) delay, i.e., q−1y(t) = y(t−ts).
Compared to the continuous-time model (1), the discrete-time
model (2) is clearly unsuitable to capture the physical structure of
the target system.

As for identification for the continuous-time models, many ef-
forts have been made. For example, a comprehensive survey is
given in [1], and a monograph [2] has been published in this re-
search field. Also, software such as the CAPTAIN and CONTSID tool-
boxes have been developed [3,4], and several new functions for
continuous-time models have been added to the System Identi-
fication Toolbox in MATLAB (R2012a) recently [5]. In studies on
a data-based mechanistic approach, continuous-time models are
utilised to model environmental systems in physically meaning-
ful form (see [6] and references therein). However, not enough at-
tention has been paid to the compatibility of the continuous-time
models with the physical structures of the target systems. Indeed,
most of the existing software on continuous-time transfer function
model identification has been focused on estimating coefficients
of the transfer functions and have restricted ability to directly es-
timate the physical quantities contained in the continuous-time
models. So it is quite common to utilise generic non-linear opti-
misation methods, such as the Gauss–Newton algorithm, for esti-
mating physical quantities in complicated systems.However, these
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Fig. 1. A mass–spring–damper system.

genericmethods are not robust in the sense that the results heavily
rely on the initial estimates, and that they often run into numerical
problems in practical use.

In this paper, we introduce a continuous-time transfer function
model identification method with a framework for handling grey-
box structures. The proposed framework can handle various types
of structured models in a unified way, and the indirect closed-
loop identification problem also can be handled as a structured
model. The algorithm of the identification method is derived from
the iterative learning control (ILC) based identification schemepre-
sented in [7,8]. The algorithmperforms incrementalmodel updates
and utilises projection onto the signal subspace which reflects the
model structure. This incremental scheme enables the method to
handle a broad class of non-linear model structures as generic
optimisation-basedmethods. And, the projection based estimation
scheme enables us to integrate robustness of existing identification
methods and generic optimisation methods.

This paper is organised as follows. In Section 2, the problem set-
ting is described, and the signal basis utilised for parameter estima-
tion is introduced in Section 3. Then, the iterative algorithmwhich
achieves consistent estimates is introduced in Section 4 and refined
in Section 5. The robustness and applicability of the proposed algo-
rithm is demonstrated through numerical examples in Section 6,
where examples related to a grey-boxmodel with closed-loop set-
ting and a system with time-delay are shown. Finally, Section 7
concludes the paper.

In the rest of the paper, we will use the following notations.
I is the identity matrix. AĎ is defined as AĎ ,


ATA

−1 AT . For
vectors v and w, ∥v∥2 is the 2-norm of the vector and v ≼ w
indicates element-wise inequalities. For a matrix M , ∥M∥2 is the
matrix norm induced by 2-norm. We use rational functions of p
to describe the transfer functions of systems. For conciseness, we
denote the response of a system G(p) for an input u(t) with zero
initial condition by

G(p)u(t) , L−1 [G(s)] ∗ u(t) (3)

where f (t)∗g(t) is the convolution of f (t) and g(t), and time delay
is denoted by

e−τpu(t) , u(t − τ). (4)

If X is distributed normally with mean µ and variance σ 2, we de-
note X ∼ N (µ, σ 2). Also, if X is uniformly distributed in [a, b], we
denote X ∼ U(a, b).

2. Problem setting

In this paper, we consider a single-input, single-output, linear
and time-invariant continuous-time system with parameters, and
propose a method to estimate the parameters from its I/O data.
Here, we assume that the equation for the data-generating system
is written byydet(t) = G(p, θ0)u(t) ,

N(p, θ0)

D(p, θ0)
u(t)

y(t) = ydet(t)+ η(t)
(5)

where u(t) and y(t) are the input and output of the system, re-
spectively; η(t) is the measurement noise; ydet(t) is the determin-
istic part of the output signal; G(p, θ0) is the transfer function, and
θ0 =


θ0,1, θ0,2, . . . , θ0,nθ

T
∈ Rnθ is the model parameters.

Then, the objective here is to estimate θ0 from input u(t) and
sampled output data {y(t1), y(t2), . . . , y(tN)}.

Also, wemake the following assumptions on the target system:
• G(p, θ0) is stable;
• G(p, θ0) is initially at rest;
• the sequence of the sampled noise {η(t1), η(t2), . . . , η(tN)} is a

zero-mean sequence and has no correlation with u(t);

and assume that a grey-box structure of themodel G(p, θ) satisfies
the following condition.

Condition 1. N(p, θ) and D(p, θ) are affine in parameter θ.

Note that the aboveproblemsettingwith Condition 1 includes both
the standard black box models and a wide class of grey box mod-
els which represent prior knowledge of the target systems. Fur-
thermore, it includes themodels with indirect closed loop settings.
Hence, it provides us a unified framework for various types of iden-
tification problems.

Example 1 (Standard Black-box Model). The ℓ-th order black-
box continuous-time model with parameter θ , [θ1, . . . , θ2ℓ]T
described by

G(p, θ) =
θℓ+1 + θℓ+2p+ · · · + θ2ℓpℓ−1

θ1 + θ2p+ · · · + θℓpℓ−1 + pℓ
(6)

satisfies Condition 1. �

Example 2 (Indirect Closed-loop Setting). The transfer function of
the closed-loop system

G(p, θ) =
P(p, θ)K(p)

1+ P(p, θ)K(p)
, (7)

which is composed of a known controller K(p) and a target system
with parameter P(p, θ), satisfies Condition 1 if P(p, θ) satisfies
the condition. And, the I/O data of the closed-loop system can be
utilised to estimate the parameters contained in the target system
P(p, θ). �

In the following, we assume Condition 1 at first, and the exten-
sion to the models without Condition 1 is discussed in Section 5.3.

3. Signal basis for parameter estimation

In order to solve the above problem, here we introduce a set
of signal basis suitable for parameter estimation. Now, suppose an
estimate of the parameter θ̂

k
∈ Rnθ be given, where k indicates

that θ̂
k
is the k-th temporal estimate, and define the corresponding

estimate error signal e(t, θ̂
k
) as follows,

e(t, θ̂
k
) , y(t)− G(p, θ̂

k
)u(t). (8)

This e(t, θ̂
k
) satisfies the following relationship,

e(t, θ̂
k
) = y(t)− G(p, θ̂

k
)u(t) (9)

=


G(p, θ0)− G(p, θ̂

k
)

u(t)+ η(t) (10)

=


N(p, θ0)− N(p, θ̂

k
)

D(p, θ̂
k
)

−
D(p, θ0)− D(p, θ̂

k
)

D(p, θ̂
k
)

G(p, θ0)


u(t)+ η(t). (11)
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