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a b s t r a c t

Recently, a deterministic learning theory was proposed for locally-accurate identification of nonlinear
systems. In this paper, we investigate the performance of deterministic learning, including the learning
speed and learning accuracy. By analyzing the convergence properties of a class of linear time-varying
(LTV) systems, explicit relations between the persistency of excitation (PE) condition (especially the level
of excitation) and the convergence properties of the LTV systems are derived. It is shown that the learning
speed increaseswith the level of excitation and decreaseswith the upper bound of PE. An optimal learning
speed is shown to exist. The learning accuracy also increases with the level of excitation, in particular,
when the level of excitation is large enough, locally-accurate learning can be achieved to the desired
accuracy, whereas low level of PE may result in the deterioration of the learning performance. This paper
reveals that the performance analysis of deterministic learning can be established on the basis of classical
results on stability and convergence of adaptive control. Simulation studies are included to illustrate the
results.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Adaptation and learning are two closely related topics that
had been extensively studied in the 1960s. At that time, adaptive
control and learning control were competing terms having similar
but somewhat undevelopedmeanings (see [1,2] and the references
therein). Since the 1970s there have been many fundamental
developments of adaptive control, see the surveys and books
including [2–7] and the references therein. Adaptive control has
as a key feature the ability to adapt to, or ‘learn’ the unknown
parameters during online adjustment of controller parameters in
order to achieve stability and control performance. However, the
learning ability of adaptive control is actually very limited. In the
process whereby an adaptive control algorithm adjusts online the
controller parameters so that closed-loop stability is maintained,
it is not required that the parameters converge to their true
values. The adaptive controllers need to recalculate the controller
parameters even for repeating exactly the same control task [8].

Learning is clearly a very desirable characteristic of advanced
control systems, however, learning from a dynamical closed-
loop control process is a very difficult problem. This problem is
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related to closed-loop identification, or more generally, learning
in a nonstationary (dynamic) environment [9], and has remained
unresolved for a long period of time. To achieve accurate
identification of system dynamics, it is required that the persistent
excitation (PE) condition be satisfied [10], and exponential stability
of a class of linear time-varing (LTV) systems arising in adaptive
identification and control be established [6,7]. The PE condition is
one of the most important concepts in identification and adaptive
control. For general nonlinear systems, however, the PE condition
is very difficult to characterize and usually cannot be verified a
priori [11,12].

Recently, a deterministic learning (or dynamic learning)
approach was proposed for identification of nonlinear systems
ẋ = F(x; p), x(t0) = x0, where p is a system parameter vector
and F(x; p) is an unknown nonlinear vector field. It is assumed that
the system trajectory starting from x0, denoted as ϕζ , is a recurrent
trajectory (see [13–15]). By using the localized radial basis function
network (RBFN) fnn(Z) =

∑N
i=1 wisi(Z) = W T S(Z), where Z is a

bounded input vector (see [16]), a partial PE condition, i.e., the PE
condition of a certain regression subvector constructed out of the
radial basis functions (RBFs) along the recurrent trajectory ϕζ is
proven to be satisfied. This partial PE condition leads to exponential
stability of the identification error system which is in the form
of the LTV systems arising in identification and adaptive control,
a general form of such a kind of LTV systems can be referred to
[17, Eq. (4)]. Consequently, accurate NN identification of the
nonlinear dynamics (including closed-loop dynamics) is achieved
within a local region along the recurrent trajectory ϕζ . This
approach is referred to as ‘‘deterministic learning’’ since it is
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developed not by using statistical principles (e.g. [18]), but by
utilizing deterministic algorithms fromadaptive control (e.g. [6,7]).
The deterministic learning approach provides an effective solution
to the problem of learning in dynamic environments, and is
useful in many applications such as dynamical pattern recognition
[19], learning and control of robotics [20], and oscillation fault
diagnosis [21].

It has been shown that the nature of deterministic learning
is related to the PE condition and the exponential convergence
of the class of LTV systems. Concerning the stability of the class
of LTV systems, many significant results have been achieved
(e.g., [6,7,22–27]). By employing the concept of uniform complete
observability (UCO), exponential convergence of the LTV system
was established under the satisfaction of the PE condition
[4,7,24]. Interpretations of the relationship among PE, UCO and
exponential stability of the LTV system are nicely summarized
in [24]. In [6], comprehensive discussions on the PE condition and
parameter convergence were provided. [4] placed more emphasis
on the issues of robustness and effects of disturbances on adaptive
algorithms. Exponential convergence performance with different
adaptive algorithms were studied in [28]. By extending the
definition of the PE condition, and using modern tools which are
‘‘integral’’ versions of classical Lyapunov theorems, stability and
convergence of a class of nonlinear time-varying (NLTV) systems
arising in nonlinear adaptive identification were investigated
[25,17,29,30]. These results will make adaptive control own the
ability to ‘‘truly learn’’ the unknown parameters through online
parameter adjustment during closed-loop control, thus they will
contribute greatly to the development of adaptive control, as well
as to the establishment of deterministic learning.

In this paper, we further investigate the performance of
deterministic learning, including the learning speed and learning
accuracy. This is a very important issue for both theoretical and
practical reasons. The speed and accuracy of deterministic learning
is studied by analyzing the convergence properties of the class
of LTV systems. Specifically, explicit relations between the PE
condition (especially the level of excitation) and the convergence
properties of the LTV systems are derived. The convergence rate
and residual error of the perturbed LTV system are subsequently
obtained. It is thus shown that the learning speed increases with
the level of excitation and decreases with the upper bound of
PE. By analyzing the effects of design parameters on learning
speed, an optimal learning speed is shown to exist. The learning
accuracy also increases with the level of excitation, in particular,
when the level of excitation is large enough, locally-accurate
learning can be achieved to the desired accuracy, whereas low
level of PE may result in the deterioration of the learning
performance. The attraction of this paper lies in that it reveals
that the performance analysis of deterministic learning can be
conducted via convergence analysis of the class of LTV systems
arising in adaptive control, and thus classical results on stability
and convergence of adaptive control play a significant role in
the establishment and development of the new dynamic learning
methodology.

The rest of the paper is organized as follows. Preliminary results
and problem formulation are contained in Section 2. Convergence
properties of the perturbed LTV system and performance of
deterministic learning are analyzed in Section 3. Numerical
simulations to illustrate the results are given in Section 4. Section 5
concludes the paper.

2. Preliminaries and problem formulation

2.1. Localized RBF networks and PE

The RBF networks can be described by fnn(Z) =
∑N

i=1 wisi(Z) =

W T S(Z) [16], where Z ∈ ΩZ ⊂ Rq is the input vector, W =

[w1, . . . , wN ]
T

∈ RN is the weight vector, N is the NN node
number, and S(Z) = [s1(‖Z − ξ1‖), . . . , sN(‖Z − ξN‖)]T , with
si(·) being a radial basis function, and ξi (i = 1, . . . ,N) being
distinct points in state space. The Gaussian function si(‖Z − ξi‖) =

exp


−(Z−ξi)
T (Z−ξi)

η2i


is one of the most commonly used radial basis

functions, where ξi = [ξi1, ξi2, . . . , ξiq]
T is the center of the

receptive field and ηi is the width of the receptive field. The
Gaussian function belongs to the class of localized RBFs in the sense
that si(‖Z − ξi‖) → 0 as ‖Z‖ → ∞.

It has been shown in [16,31] that for any continuous function
f (Z) : ΩZ → R where ΩZ ⊂ Rq is a compact set, and for the
NN approximator, where the node number N is sufficiently large,
there exists an ideal constant weight vectorW ∗, such that for each
ϵ∗ > 0, f (Z) = W ∗T S (Z) + ϵ, ∀Z ∈ ΩZ , where |ϵ| < ϵ∗ is the
approximation error. The ideal weight vector W ∗ is an ‘‘artificial’’
quantity required for analysis, and is defined as the value ofW that
minimizes |ϵ| for all Z ∈ ΩZ ⊂ Rq, i.e.

W ∗ , arg min
W∈RN


sup
Z∈ΩZ

f (Z) − W T S(Z)
 .

Moreover, for any bounded trajectory Z(t) within the compact
set ΩZ , f (Z) can be approximated by using a limited number of
neurons located in a local region along the trajectory: f (Z) =

W ∗T
ζ Sζ (Z) + ϵζ , where ϵζ is the approximation error, with ϵζ =

O(ϵ) = O(ϵ∗), Sζ (Z) = [sj1(Z), . . . , sjζ (Z)]T ∈ RNζ , W ∗

ζ =

[w∗

j1
, . . . , w∗

jζ
]
T

∈ RNζ , Nζ < N , and the integers ji = j1, . . . , jζ are
defined by |sji(Zp)| > ι (ι > 0 is a small positive constant) for some
Zp ∈ Z(t). This holds if ‖Z(t) − ξji‖ < ε for t > 0, where ε > 0.

Based on the previous results on the PE property of RBF
networks [32,33,12], it is shown in [15] that for a localized RBF
network W T S(Z) whose centers are placed on a regular lattice,
almost any recurrent trajectory Z(t) can lead to the satisfaction of
the PE condition of the regressor subvector Sζ (Z).

2.2. Deterministic learning and problem formulation

In deterministic learning, identification of system dynamics
of general nonlinear systems is achieved according to the
following elements: (i) employment of localized RBF networks;
(ii) satisfaction of a partial PE condition; (iii) exponential stability
of the adaptive system along the periodic or recurrent orbit;
(iv) locally-accurate NN approximation of the unknown system
dynamics [15].

Consider a general nonlinear dynamical system:

ẋ = F(x; p), x(t0) = x0 (1)

where x = [x1, . . . , xn]T ∈ Rn is the state of the system, which is
measurable, p is a system parameter vector, F(x; p) = [f1(x; p),
. . . , fn(x; p)]T is a smooth but unknown nonlinear vector field.

Assumption 1. The state x remains uniformly bounded, i.e., x(t) ∈

Ω ⊂ Rn, ∀t ≥ t0, where Ω is a compact set. Moreover, the system
trajectory starting from x0, denoted as ϕζ (t, x0, p) or sometimes as
ϕζ for the simplicity of presentation, is a recurrent trajectory.

The recurrent trajectory represents a large class of trajectories
generated from nonlinear dynamical systems, including not only
periodic trajectories, but also quasi-periodic, almost-periodic and
even some chaotic trajectories. Roughly, a recurrent trajectory is
characterized as follows: given ν > 0, there exists a finite T (ν) > 0
such that the trajectory returns to the ν-neighborhood of any point
on the trajectory within a time not greater than T (ν). Please refer
to [34] for a rigorous definition of recurrent trajectory.
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