
Systems & Control Letters 60 (2011) 885–891

Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Low order integral-action controller synthesis
A.N. Gündeş a,∗, E.C. Wai b
a Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, United States
b Digital Technology Laboratory Corp., 3805 Faraday Avenue, Davis, CA 95618, United States

a r t i c l e i n f o

Article history:
Received 20 September 2010
Received in revised form
17 May 2011
Accepted 14 July 2011
Available online 9 September 2011

Keywords:
Stabilization
Tracking
Integral action
Controller synthesis

a b s t r a c t

A simple controller synthesis method is developed for certain classes of linear, time-invariant, multi-
input multi-output plants. The number of poles in each entry of these controllers depends on the number
of right-half plane plant zeros, and is independent of the number of poles of the plant to be stabilized.
Furthermore, these controllers have integral-action so that they achieve asymptotic tracking of step input
references with zero steady-state error. The designed controller’s poles and zeros are all in the stable
regionwith the exception of one pole at the origin for the integral-action design requirement. The freedom
available in the design parameters may be used for additional performance objectives, although the only
goal here is stabilization and tracking of constant references.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we show that it is possible to design very simple
controllers to stabilize a special class of linear time-invariant (LTI),
multi-input multi-output (MIMO) plants that have restrictions on
their (blocking and transmission) zeros that lie in the region of
instability. The pole locations are not restricted, and the zeros
that are in the stable region open left-half complex-plane (OLHP)
are not restricted. An additional objective is to design these LTI
controllers with integral-action so that the closed-loop system
achieves asymptotic tracking of constant reference inputs with
zero steady-state error.

Controllers stabilizing a complex plant and achieving a spec-
ified performance are usually at least as complex as the plant
itself [1]. Low order controllers or controllers with the least num-
ber of poles are generally preferred for ease of implementation. In
control system design, the issues of computation and implemen-
tation of high-order controllers are dealt with using reduction ap-
proaches such as (a) designing the high-order controller and then
approximating it with a low-order one within an acceptable loss
of performance; (b) reducing the order of the plant model with the
prospect that a low-ordermodel will lead to a low-order controller
(see e.g., [2–8]). Model reduction is not the objective of this work.
The synthesis approach developed in this paper directly gives sim-
ple controller design that stabilizes the original plant without the
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need to reduce the plant model. Since the resulting controllers are
simple, they need not be approximated with lower order ones for
implementation purposes.

Robust asymptotic tracking of reference inputs is achieved
with poles duplicating the dynamic structure of the exogenous
signals that the regulator has to process. Due to this internal model
principle, integral-action controllers have poles at the origin of the
complex plane [9]. The standard method of designing controllers
with integral-action starts by augmenting the plant dynamics with
extra states corresponding to the integral of the output error,
i.e., the plant’s transfer-matrix is replaced by P/s. In the MIMO
case with m inputs and outputs, the integrator augmented to the
plant introducesm additional states. Using a full-order observer to
estimate the n states of the original plant and state feedback on the
(n + m) states, the resulting (m × m) controller transfer-matrix
is always strictly-proper, has m of its eigenvalues at the origin,
and the remaining eigenvalues may be anywhere in the complex
plane. The entries of the controller’s transfer-matrix C would have
up to (n + 1) poles, one of which is at the origin. Although this
standardmethodmay not result in a simple controller, it applies to
any LTI plant. On the other hand, for the special classes of plantswe
consider here, amuch simpler integral-action controller design can
be achieved. The special class of plants here has no restrictions as
far as the location of the poles is concerned (stable or unstable) and
the zeros in the OLHP or infinity are also not restricted. However,
we assume that the zeros in the region of instability are on the
positive real axis and have ‘‘large’’ magnitude (including infinity).

Based on the restrictions imposed on the zeros in the unstable
region, we consider three special classes of (square) MIMO plants
in Section 3. All results apply to single-input single-output (SISO)
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plants as a special case. In all cases, there may be any number of
(transmission or blocking) zeros in the OLHP. Section 3.1: The class
of plants in this subsection allows no (transmission or blocking)
zeros in the unstable region or at infinity. This is a very simple case
to treat and is included in the discussion only for completeness.
As shown in Proposition 1, integral-action controllers can be
constructed with first-order terms in every nonzero entry of the
controller’s transfer-matrix C , with exactly one pole at the origin,
and one OLHP zero in each nonzero term of C . In other words, C
is a proportional + integral (PI) controller, with constant matrix
proportional and integral terms in the MIMO case. Section 3.2:
The class of plants in this subsection allows only blocking zeros
on the real-axis of the unstable region, including any number
of blocking zeros at infinity. Asymptotically tracking controller
design for a more restricted sub-class of plants that have only
exactly one blocking zero at infinity has also been considered in
the context of funnel control (see e.g., [10] and the references
therein). Proposition 2 shows that plants with r blocking zeros
(with large magnitudes) on the positive real-axis can be stabilized
using integral-action controllers that have exactly r poles in every
entry of the controller’s (m × m) transfer-matrix, where one of
these poles is at s = 0. The case where the unstable zeros are all at
infinity is particularly interesting: The remaining (r−1) controller
poles are all in the region of stability (OLHP). Furthermore, the
controllers are bi-proper and they have stable inverse. For SISO
plants (m = 1) that have n poles and r positive large zeros (or
zeros at infinity), the proposed design gives an r-th order integral-
action controller, which is bi-proper, and has one pole at s = 0,
and (r − 1) poles in the OLHP. On the other hand, a design based
on augmenting the SISO plant as P/s would result in a strictly-
proper controller of order (n + 1), with one pole at s = 0 and
someof thenpoles possibly in the closed right-half plane. Although
this augmentation method creates a more complex controller, it
is available for any plant, whereas the proposed simple design
applies to the described plant classes only. Section 3.3: The class
of plants in this subsection allows any number of transmission
zeros at infinity in addition to blocking zeros. Proposition 3
gives a straightforwardmethod of obtaining simple integral-action
controllers. Illustrative SISO and MIMO examples are also given,
and a comparison of the number of poles of the controller is
provided with the standard integral-action design method based
on full-order observer and state-feedback applied to an augmented
plant model.

Although we discuss continuous-time systems here, all results
apply also to discrete-time systems with appropriate modifica-
tions. The following fairly standard notation is used:

Notation: Let R, R+, C denote real, positive real, and complex
numbers, respectively. The extended closed right-half plane isU =

{s ∈ C | Re(s) ≥ 0} ∪ {∞};Rp denotes real proper rational
functions of s; S ⊂ Rp is the stable subset with no poles in U;
M(S) is the set ofmatrices with entries in S; I is the identitymatrix
(of appropriate dimension). A transfer-matrix M ∈ M(S) is called
unimodular iff M−1

∈ M(S). The H∞-norm of M ∈ M(S) is
denoted by ‖M‖ (i.e., the norm ‖ · ‖ is the usual operator norm
‖M‖ := sups∈∂U σ̄ (M(s)), where σ̄ is the maximum singular
value and ∂U is the boundary of U). For simplicity, we drop (s) in
transfer-matrices such as P(s) where this causes no confusion. We
use coprime factorizations over S: For P ∈ Rp

m×m, C ∈ Rp
m×m, P =

D−1N denotes a left-coprime-factorization (LCF), and C = NcD−1
c

denotes a right-coprime-factorization (RCF), where N,D,Nc,Dc ∈

Sm×m, detD(∞) ≠ 0, detDc(∞) ≠ 0. For full-rank P , we say that
z ∈ U is a U-zero of P if rank N(z) < m; these zeros include
both transmission zeros and blocking zeros in U. If z ∈ U is a
blocking zero of P , then P(z) = 0 and equivalently N(z) = 0.
We use diag


x1, . . . , xm


to denote the (m × m) diagonal matrix

whose diagonal entries are xj, j = 1, . . . ,m. We use δn to denote
the polynomial degree of n.

Fig. 1. Unity-feedback system Sys(P, C).

2. Problem description

Consider the standard LTI, MIMO unity-feedback system
Sys(P, C) shown in Fig. 1, where P ∈ Rp

m×m and C ∈ Rp
m×m denote

the plant’s and the controller’s transfer-matrices, respectively. It is
assumed that the feedback system is well-posed, P and C have no
hidden-modes in the unstable region, and the plant P ∈ Rp

m×m

is full normal rank m. The objective is to design a low-order
stabilizing controllerC with integral-action, so that the closed-loop
system achieves asymptotic tracking of step-input references with
zero steady-state error.

Let P = D−1N be an LCF of the plant and C = NcD−1
c be an RCF

of the controller. Let the (input-error) transfer-function from u to
e be denoted by Heu and let the (input–output) transfer-function
from u to y be denoted by Hyu; then

Heu = (I + PC)−1
= I − PC(I + PC)−1

= I − Hyu. (1)

Definition 1. (i) The system Sys(P, C) is stable if the closed-loop
transfer-function from (u, v) to (y, w) is stable. (ii) The controller
C is said to stabilize P if C is proper and the system Sys(P, C) is
stable. (iii) The stable system Sys(P, C) has integral-action if Heu
has blocking zeros at s = 0. (iv) The controller C is an integral-
action controller if C stabilizes P and the denominator Dc of any
RCF C = NcD−1

c has blocking zeros at s = 0, i.e., Dc(0) = 0. �

The controller C stabilizes P ∈ M(Rp) if and only if

M := DDc + NNc (2)

is unimodular [11,12]. Suppose that the system Sys(P, C) is stable
and that step input references are applied to the system. Then
the steady-state error e(t) due to all step input vectors at u(t)
goes to zero as t → ∞ if and only if Heu(0) = 0. Therefore,
by Definition 1, the stable system Sys(P, C) achieves asymptotic
tracking of constant reference inputs with zero steady-state error
if and only if it has integral-action. Write Heu = (I + PC)−1

=

Dc M−1D . Then by Definition 1, Sys(P, C) has integral-action if
C = NcD−1

c is an integral-action controller since Dc(0) = 0 implies
Heu(0) = (DcM−1D)(0) = 0.

Lemma 1 states the necessary condition on P, for existence of
integral-action controllers.

Lemma 1 (Necessary Condition for Integral-Action). Let P ∈ Rp
m×m.

Let rankP(s) = m. If the system Sys(P, C) has integral-action, then P
has no transmission zeros at s = 0. �

In order to design controllers with integral-action, we assume
from now on that the plants under consideration have no zeros at
s = 0, i.e., rankP(0) = m.

3. Low order controller synthesis

The plants under consideration here for low-order stabilizing
controller synthesis have no restrictions on their poles; there are
no restrictions on the zeros in the OLHP C \ U, and at infinity.
However, the finite U-zeros are restricted. In order to design
controllers with integral-action, based on the necessary condition
of Lemma 1, we assume everywhere that the plant has no zeros at
s = 0, i.e., rankP(0) = m.
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