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a b s t r a c t

The focus of this paper is on the analysis of initial discrete state distinguishability notions for switching
systems, in a discrete time setting. Moreover, the relationship between initial discrete state distinguisha-
bility and the problem of reconstructing the current discrete state is addressed.
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1. Introduction

Hybrid systems have been studied extensively in literature,
with a number of variations (see e.g. [1–4]), as well as the problem
of observability for hybrid systems (see e.g. [5]).

The reconstruction of the discrete state for a linear switching
system, i.e. a hybrid system with arbitrary switching law and with
linear dynamics, has been addressed by different authors from
different perspectives. In fact the analysis depends on the model,
the available output information, and the objective for which the
discrete state reconstruction is needed, for control purposes, for
detection of critical situations or for diagnosis of past system
evolutions([6–12], and references therein).

In this paper, inspired by [13], we focus on an exhaustive
analysis of initial discrete state distinguishability notions, which
differ from each other in the role of the input function and of the
continuous initial state. We assume information on the output,
which is a function of time, taking value in a vector space, and
hence no discrete signal is available. After characterizing and
comparing these distinguishability notions, implications on the
property of reconstructing the current discrete state are discussed.

The techniques we use rely upon geometrical tools (see e.g.
[14]).

The results have been established in a discrete time setting.
A parallel analysis for continuous time systems can be easily
done, leading to the same geometrical characterization for the
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properties, and therefore most of the conditions in [7,9,12,15] can
be retrieved as special cases.

Some of the distinguishability notions we address could be
derived fromdefinitions already studied in literature, or are strictly
related to them (see e.g. [6] or [7]). But here the goal is that of
analyzing the relationships among different notions, and the result
will be that of establishing equivalences, in order to simplify the
framework. Nevertheless discussions with already known results
will be offered, when appropriate.

In Section 2, the main setting is established. In Section 3, initial
discrete state distinguishability notions are defined and character-
ized. In order to improve the readability, some technical proofs are
reported in the Appendix. In Section 4, the question of current dis-
crete state reconstruction is addressed. In Section 5, we give some
hints to extend the result to the continuous time case. Finally, some
concluding remarks are offered in the last section.

Notations: N, R denote the set of integer and real numbers,
respectively. For a, b ∈ N, a ≤ b, the symbol [a, b] denotes the
set {z ∈ N : a ≤ z ≤ b}. Given the matrixM ∈ Rm×n,M ′

∈ Rn×m is
the transpose matrix of M . For a function f : N → Rm, f |[a,b] ∈

Rm×(b−a+1) denotes the vector

f ′(a) . . . f ′(b)

′. A set Ω will be
called to be a proper subset ofΓ ifΩ ⊂ Γ andΩ ≠ Γ . The symbol
0 denotes a vector or a matrix with all the entries equal to zero.

2. The model

Switching systems are a subclass of hybrid systems, extensively
addressed in literature in the past years (see e.g. [1–4]). Roughly
speaking, for this subclass commutations between different
dynamics (or modes) are not controlled, nor known in advance.
The current mode identifies a possible state of the system. Hence
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the finite set of modes represents the discrete state space of the
system.

We analyze switching systems in discrete time setting. For
a given input function, between any two consecutive switches,
the continuous state evolution is determined by linear recursive
equations, associated to the current mode; the continuous state
after a switching belongs to a set, depending on the state before
the switching.

Systems in this class will be called discrete time LSw- systems.1
For simplicity, in the sequel we shall omit ‘‘discrete time’’. The
finite set of modes {1, 2, . . .} is calledQ. To each i ∈ Q is associated
the discrete time dynamical system Si defined by the equations:

x (t + 1) = Aix (t) + Biu (t)
y (t) = Cix (t)

where t ∈ N, x (t) ∈ Rni , u(t) ∈ Rm and y (t) ∈ Rp. Hence Si is
fully described by (Ai, Bi, Ci). The symbol S denotes the collection
of Si, i ∈ Q. The hybrid state space of a LSw-system is the
set Ξ =


i∈Q {i} × Rni . The mode evolution is described by

the collection of transitions E ⊂ Q × Q. When a switching from
mode i to mode j occurs, the continuous component x−

∈ Rni of
the hybrid state before the switching is instantaneously reset to a
new value x+

∈ Rnj , and x+
∈ M(i,j)


x−


, whereM(i,j) : Rni → 2Rnj

is a point to set mapping. LetM denote the collection ofMe.
For brevity, we say that a LSw-system is a tuple

S = (Ξ , S, E,M)

where all the symbols have been already defined.
The hybrid time basis τ is an infinite or finite collection of

time intervals Ik =

tk, t ′k


=


t ∈ N : tk ≤ t ≤ t ′k


, k = 1 . . . L,

L = card(τ ), with t ′k ≥ tk, t ′k = tk+1; if L < ∞, then IL =
t ∈ N : tL ≤ t < t ′L


and t ′L can be finite or infinite. The times t ′k

will be called switching times and, in particular, t ′1 denotes the first
switching time. Denote by T the set of all hybrid time bases. We
can set the initial time t1 = 0, without loss of generality.

The temporal evolution of a LSw-system is now formally
described.

Definition 1 (Hybrid System Execution). Given the hybrid initial
state ξ0 = (q0, x0) ∈ Ξ , the tuple χ = (τ , ξ , η), with time base
τ ∈ T , card(τ ) = L, ξ : N × {1, . . . , L} → Ξ , η : N → Rp, is an
execution of S with initial state ξ0 if

ξ (0, 1) = (q (1) , x (0, 1)) = ξ0,
ξ (t, k) = (q (k) , x (t, k)) t ∈ Ik, k = 1, . . . , L
η (t) = Cq(k)x (t, k) tk ≤ t ≤ t ′k − 1; k = 1, . . . , L

where ξ (t, k) denotes the hybrid state at time t ∈ Ik, q :

{1, . . . , L} → Q and q (k) represents the mode during interval
Ik, q (k + 1) is such that e (k) = (q (k) , q (k + 1)) ∈ E, with
e : {1, . . . , L − 1} → E; x (tk+1, k + 1) ∈ Me(k)


x(t ′k, k)


, k =

1 . . . L−1; x (t, k) ∈ Aq(k)x (t − 1, k)+Im

Bq(k)


, for tk+1 ≤ t ≤ t ′k.

Let U = (Rm)N be the set of all input functions. An execution
with input u ∈ U is an execution, as defined above, with x (t, k) =

Aq(k)x (t − 1, k) + Bq(k)u(t − 1), for tk + 1 ≤ t ≤ t ′k. Notice that,
by Definition 1, for a given initial hybrid state and a given input
function u, a hybrid system execution with input u always exists
but it is not unique, in general. In fact non-determinism might
arise both from the uncontrolled switchings, both from the reset

1 Notations and formal descriptions previously introduced in [16] are here
adapted to the current context. Moreover, we abuse the terminology ‘‘LSw-
systems’’, previously introduced in [17], with almost the same meaning, but with
linear reset functions.

mechanism, which associates to the continuous state before the
switching any of the states in a set, after the switching occurred.

Given an execution (τ , ξ , η), (τ , ξ) describes the hybrid state
evolution and η describes the output evolution of S.

For simplicity, we abuse notation by using the same symbol
x both for the state of Si, for any i ∈ Q, and for the continuous
component of the hybrid state of S. The context and the different
arguments of the functions make the meaning of such a symbol
univocally determined.

Finally, a set Ξ =


i∈Q {i} × Ωi ⊂ Ξ will be called ‘‘a generic
subset of Ξ ’’ if each set Ωi is dense in Rni . A generic subset of
(Rm)N is a set dense in (Rm)N, equipped with the L∞ norm. A
property which holds for all parameters in a generic subset of the
parameters space will be said to hold generically, or that it holds
for a generic parameter. Loosely speaking, saying that a property
holds for a generic parameter, means that it holds for almost all
parameters, or, equivalently, that it holds for all parameters except
those belonging to a set of measure 0.

3. Initial mode distinguishability

3.1. Definitions

The distinguishability of the initial mode for any initial state
and for any input function is not a well defined property: in fact if
we consider zero initial continuous state and zero input function,
distinguishability is not obviously possible. Therefore, we have
to consider different distinguishability notions, which differ from
each other for the role played by the initial continuous state,
assumed unknown, and by the input function.

The first definition requires distinguishability of the initial
mode for all input and for generic initial states. In fact the state-
ment below implies that the value of the initial mode can be uni-
vocally determined from the knowledge of η|[0,∆] and of u|[0,∆−1],
for some time ∆ ≥ 1, for any input function u ∈ U and for a
generic initial hybrid state ξ0.

Definition 2. A LSw-system S is initial mode, state-generic dis-
tinguishable (IM-SG-D) if there exists an integer ∆ ≥ 1 such
that η′


[0,∆] ≠ η′′


[0,∆], for any pair of executions


τ ′, ξ ′, η′


and


τ ′′, ξ ′′, η′′


, with input u ∈ U and with initial states ξ ′

0 =
q′

0, x
′

0


∈ Ξ0, ξ ′′

0 =

q′′

0, x
′′

0


∈ Ξ0, q′

0 ≠ q′′

0 , respectively, where
Ξ0 is a generic subset of Ξ . If the property holds for Ξ0 = Ξ , then
S will be called IM-D (initial mode distinguishable).

A weaker notion is introduced in the next definition, by consid-
ering the case of distinguishability of the initial mode for some in-
put and for generic initial states. Here the input function in general
depends on the initial state, which is unknown. Hence such defini-
tion is not so useful in practice. However it will be instrumental in
proving equivalences between distinguishability notions.

Definition 3. A LSw-system S is initial mode, state-generic,
weakly distinguishable (IM-SG-WD) if there exists an integer ∆ ≥

1, there exists a generic subset Ξ0 of Ξ and for any pair ξ ′

0 =
q′

0, x
′

0


∈ Ξ0, ξ

′′

0 =

q′′

0, x
′′

0


∈ Ξ0, q′

0 ≠ q′′

0 , there existsu ∈ U,
such that η′


[0,∆] ≠ η′′


[0,∆], for any pair of executions


τ ′, ξ ′, η′


and


τ ′′, ξ ′′, η′′


, with input u and with initial states ξ ′

0 and ξ ′′

0 ,
respectively. If the property holds forΞ0 = Ξ , then S will be called
IM-WD (initial mode weak distinguishable).

The IM-WD definition corresponds to the notion of Observabil-
ity, given in [13] for the class of discrete time polynomial systems.
Since the initial state is in general unknown, this notion in principle
applies to a ‘‘multiple experiment’’ setting (see [13]). A definition
in some sense ‘‘opposite’’ to this setting, is what in [13] was called
‘‘the single experiment’’ observability notion, that, adapted to the
class of systems we consider, becomes:
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